• 제목/요약/키워드: DC-Link Voltage Ripple

검색결과 126건 처리시간 0.027초

최소 손실 불연속 변조 기법에 따른 2레벨 3상 전압원 인버터의 직류단 전압 맥동 분석 (DC-Link Voltage Ripple Analysis of Minimum Loss Discontinuous PWM Strategy in Two-Level Three-Phase Voltage Source Inverters)

  • 이준혁;박정욱
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.120-126
    • /
    • 2021
  • DC-link capacitors are one of the main components in two-level three-phase voltage source inverters (VSIs); they provide the pulsating input current and stabilize the vacillating DC-link voltage. Ideally, the larger the capacitance of DC-link capacitors, the better the DC-link voltage stabilizes. However, high capacitance increases the cost and decreases the power density of VSI systems. Therefore, the capacitance should be chosen carefully on the basis of the DC-link voltage ripple requirement. However, the DC-link voltage ripple is dependent on the pulse-width modulation (PWM) strategy. This study especially presents a DC-link voltage ripple analysis when the minimum loss discontinuous PWM strategy is applied. Furthermore, an equation for the selection of the minimum capacitance of DC-link capacitors is proposed. Experimental results with R-L loads are also provided to verify the effectiveness of the presented analysis.

주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계 (Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple)

  • 김용중;이진성;김효성
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

전류 리플을 이용한 직류단 캐패시터의 용량 선정 기법에 관한 연구 (A Study on Capacitance Selection Method of DC-link Capacitor Using Current Ripple)

  • 김용휴;이병훈;황선환
    • 한국산업융합학회 논문집
    • /
    • 제25권1호
    • /
    • pp.47-53
    • /
    • 2022
  • This paper proposes a method for selecting the capacitance of DC-link capacitors of inverters. In general, the DC-link capacitance of the inverter system must be considered for DC-link voltage, ripple current, switching frequency, ripple voltage, and pulse-width modulation techniques. Therefore, the appropriate capacitance can be determined by finding the rms and peak values of the ripple current of the capacitor. In this paper, the process of extracting the ripple current of DC-link capacitor is described in detail. In addition, the simple method for finding DC-link capacitor capacitance using the result value is presented through the simulations.

태양광 발전 시스템의 120Hz 리플 전압 영향 감소를 통한 DC-Link 소형화와 출력 전류 왜곡률 감소에 관한 연구 (A Study on the DC-Link Miniaturization and the Reduction of Output Current Distortion Rate by Reducing the Effect of 120 Hz Ripple Voltage on Photovoltaic Systems)

  • 송민근;이우철
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.342-348
    • /
    • 2021
  • The PV module of solar power systems requires maximum power point tracking (MPPT) technique because the power-voltage and current-voltage characteristics vary depending on the surrounding environment. In addition, the 120 Hz ripple voltage on the DC-Link is caused by the imbalance of the system voltage and current. The effect of this 120 Hz ripple voltage reduces the efficiency of the power generation system by increasing the output current distortion rate. Increasing the capacity of DC-Link can reduce the 120 Hz ripple voltage, but this method is inefficient in price and size. We propose a technique that detects 120 Hz ripple voltage and reduces the effect of ripple voltage without increasing the DC-Link capacity through a controller. The proposed technique was verified through simulations and experiments using a 1 kW single-phase solar power system. In addition, the proposed technique's feasibility was demonstrated by reducing the distortion rate of the output current.

SRM의 DC linke 전압리플을 고려한 단일 펄스 구동 방식의 특성 해석 (The Characteristic Analysis of SRM Dirven by Single-pulse Mode Considering the Voltage Ripple of DC Linke)

  • 이성구;정대성;이주
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1976-1980
    • /
    • 2008
  • This paper deals the characteristic analysis of Switched Reluctance Motor(SRM) driven by single-pulse mode considering dc link voltage ripple. Two dimensional time-stepped Finite Element Method(FEM) is used to analyze the characteristic of SRM driven by single-pulse mode with dc link voltage ripple. The analysis results is verified by experimental test.

2-레그 3상 PWM 인버터의 출력전압에서 직류링크 리플전압의 영향 보상 (Compensation of Effects of DC-Link Ripple Voltages on Output Voltage of Two-Leg Three-Phase PWM Inverters)

  • 김영신;이동춘;석줄기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권1호
    • /
    • pp.47-53
    • /
    • 2006
  • In this paper, a simple scheme compensating for the effect of dc-link ripple voltages on output voltage of two-leg and three-phase PWM inverters is proposed, where single-phase half-bridge PWM convertor and two-leg inverter are used. The voltage at neutral point of the dc-link is controlled so that the upper-half of do-link voltage is equal to the lower-half voltage in average concept. However, the effect of the do-link ripple voltage results in the inverter output voltage and current distortion. This effect can be eliminated by introducing a compensation voltage in switching time calculation. Also, the inverter dead time should be compensated for sinusoidal output waveform. The proposed scheme has been verified by experimental results which were obtained from the V/F constant operation of the induction motor fed by two-leg inverter.

치과 핸드피스용 고속 PMSM의 정현파 구동을 위한 인버터 직류 링크전압 제어기법 (DC link voltage control method in the sinusoidal current drive system for dental hand-piece PMSM)

  • 전금상;박상욱;박재성;김상희;안희욱
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.16-21
    • /
    • 2013
  • This paper presents a DC link voltage control method to reduce the ripple current and the switching loss in the sinusoidal current drive system for the wide-speed range PMSM. The DC link voltage of the three phase inverter in the sinusoidal current drive system is designed by the back-EMF voltage at maximum speed of the PMSM. In general, the drive systems have used the constant DC link voltage without reference to the motor speed. The current ripple causes hysteresis loss and makes noise. In addition, the switching loss on the inverter increases in proportion to the rise in the DC link voltage. In this paper, we propose the variable DC link voltage control method to reduce the current ripple in the PMSM drive system. We show reduction effect of the current repple and the switching loss through simulation results.

보상전압 첨가를 통한 B4 인버터 성능향상 (Performance Improvement of B4 Inverters by Adding Compensation Voltage)

  • 이동명
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.110-116
    • /
    • 2013
  • This paper proposes a current ripple reduction method to improve the control performance of B4 type inverter that is studied for cost-effective drive systems. B4 inverters employ only four switches and they have a center-tapped connection between the split dc-link capacitors and one phase of a three-phase motor or load. In the B4 topology, unbalanced three-phase voltages will be generated due to the dc-link voltage ripple. To solve this problem, this paper presents a voltage distortion compensation method that adjusts the voltage reference with the consideration of dc-link voltage ripple. The validity of the proposed method is verified by simulation and excremental results with an induction machine.

DC Link 전압리플과 환류 다이오드를 고려한 스위치드 릴럭턴스 전동기의 유한요소해석 기법 (The Finite Element Methodology of Switched Reluctance Motor Considering DC Link Voltage Ripple and Freewheeling Diodes)

  • 최재학;김태형;장기봉;이상돈;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권1호
    • /
    • pp.1-8
    • /
    • 2005
  • This paper presents a characteristic analysis of switched reluctance motor (SRM) considering switching control method and DC link voltage ripple by using time-stepped voltage source finite element method in which the magnetic field is combined with drive circuit. We also examine the influence of freewheeling diodes and DC link voltage ripple on the performance of the SRM such as torque ripples and radial force on the surface of the teeth. The freewheeling diodes and DC link voltage ripples must be taken into account to predict the performance of SRM.

배전선로용 단상 무효전력 보상기의 무효전력제어 (Reactive Power Control of Single-Phase Reactive Power Compensator for Distribution Line)

  • 심우식;조종민;김영록;차한주
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.73-78
    • /
    • 2020
  • In this study, a novel reactive power control scheme is proposed to supply stable reactive power to the distribution line by compensating a ripple voltage of DC link. In a single-phase system, a magnitude of second harmonic is inevitably generated in the DC link voltage, and this phenomenon is further increased when the capacity of DC link capacitor decreases. Reactive power control was performed by controlling the d-axis current in the virtual synchronous reference frame, and the voltage control for maintaining the DC link voltage was implemented through the q-axis current control. The proposed method for compensating the ripple voltage was classified into three parts, which consist of the extraction unit of DC link voltage, high pass filter (HPF), and time delay unit. HPF removes an offset component of DC link voltage extracted from integral, and a time delay unit compensates the phase leading effect due to the HPF. The compensated DC voltage is used as feedback component of voltage control loop to supply stable reactive power. The performance of the proposed algorithm was verified through simulation and experiments. At DC link capacitance of 375 uF, the magnitude of ripple voltage decreased to 8 Vpp from 74 Vpp in the voltage control loop, and the total harmonic distortion of the current was improved.