• Title/Summary/Keyword: DC-DC 컨버터

Search Result 1,956, Processing Time 0.026 seconds

Implementation of a DSP Based Fuel Cell Hardware Simulator (DSP기반 연료전지 하드웨어 시뮬레이터 구현)

  • Oum, Jun-Hyun;Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.59-68
    • /
    • 2009
  • Fuel cell generators as the distributed generation system with a few hundred watt$\sim$a few hundred kilowatt capacity, can supply the high quality electric power to user as compared with conventional large scale power plants. In this paper, PEMFC(polymer electrolyte membrane fuel cell) generator as micro-source is modelled by using PSIM simulation software and DSP based fuel cell hardware simulator based on the PSIM simulation model is implemented. The relation of fuel cell voltage and current(V-I curve) is linearized by first order function on the ohmic area in voltage-current curve of fuel cell. The implemented system is composed of a PEMFC hardware simulator, an isolated full bridge dc boost converter, and a 60[Hz] voltage source PWM inverter. The voltage-current-power(V-I-P) characteristics of the implemented fuel cell hardware simulator are verified in load variation and transient state and the 60[Hz] output voltage sinusoidal waveform of the PWM inverter is investigated under the resistance load and nonlinear diode load.

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

Analysis and Implementation of the Capacitive Idling SEPIC (용량성 아이들링 SEPIC의 분석 및 구현)

  • 최동훈;조경현;나희수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • As the portable electronic equipments are developed and popularized, the batteies are more important. To prolong life of the equipments, engineers demand to have batteries of high-power density and they are used to use Li-ion batteries popularly Li-ion batteries are better than conventional batteries, Ni-cd, about power density per volume and weight, but they have a fault that discharge voltage of them goes down. In order to maximize life of the Li-ion batterries, we have to use a converter which is suitable for the characteristic of Li-ion batteries. Therefore, capacitive idling SEPIC(Single Ended Primary Inductance Converter) that is derived from the SEPIC topology is proposed as a source of the Portable low-power applications. The converter has characteristics of buck-boost porformance. Besides, that makes it possible to increase the switching frequency by partial soft commutation of power switches through adding a diode and a switch. This paper is presented the characteristics, DC voltage conversion ratio, circuits of operation modes, of the converter and it is analized and implemented.

Development of High Stable Instrumentation and Analytic Techniques for Radioactive Pulses (방사선 펄스의 고안정 계측 및 분석기술 개발)

  • 길경석;송재용;한주섭;김일권;손원진
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.2
    • /
    • pp.303-308
    • /
    • 2001
  • An objection of this study is to develop a high stable measuring circuits and a analytic system for radioactive pulses. The proposed system consists of a pulse detection units for neutrons and gamma-rays a programmable high voltage supply unit and a digital signal processor. The programmable high voltage supply unit designed can generate DC voltage up to 1,500 V at 5 V input and have a series voltage regulator to maintain the output voltage constantly, resulting in less than 1.63% of voltage regulation. The pulse detection parts consists of an active integrator, a pole-zero circuit, and a 3-stage amplifier of 60 dB, and its frequency bandwidth is from 37 Hz to 300 kHzAlso, pulse height distribution in accordance with pulse counts is important data in analyzing radioactive pulses. In this study, A/D convertor (12bit, 100ms) and DSP (TMS320C31-60) are used to analyze the pulse height, and the analytic system is designed to be operated in PC-base.

  • PDF

Characteristic PCS of Inverter by Boost Converter of PV Generation (태양광 발전 부스트 컨버터를 이용한 인버터 PCS 특성)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Oh, Sang-hak
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.654-664
    • /
    • 2018
  • In this paper, this system is operated by PCS that is driven by being synchronized voltage fed inverter and AC source, and in the steady state of power source charge battery connected to DC side with solar cell using a photovoltaic (PV) that it was so called constant voltage charge. it can cause the effect of energy saving of electric power, from 10 to 20%. and through a normal operation of electric energy storage system (EESS). In addition, better output waveform was generated because of pulse width modulation (PWM) method, and it was Proved to test by experiment maintained constant output voltage regardless of AC source disconnection, load variation, and voltage variation of AC power source.

IP Voltage Controller of Three-phase PWM Converter for Power Supply of Communication System (IP 제어기를 이용한 통신 전원용 3상 PWM 컨버터의 전압 제어)

  • Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2722-2728
    • /
    • 2011
  • 3Phase PWM rectifier has become increasingly popular due to its capability of nearly sinusoidal waveform of the input current, and nearly unity power factor operation as a AC/DC rectifier of high capacity telecommunication power supply system. Generally, PI controller is used as a voltage controller of PWM rectifier and voltage controller must be designed to have low overshoot in transient state to get a reliability and stable operation. However, in the application of telecommunication in which load condition is varied very fast, the voltage controller must have a large bandwidth to reduce output voltage variation. The PI controller with large bandwidth arouse the excessive overshoot of the output voltage, and this large output voltage variation degrades the reliability of communication power of the three-phase PWM Rectifier. In this paper, new IP voltage controller for 3 phase PWM rectifier is proposed which has relatively low transient output voltage variation. The improved output characteristics of the transient state voltage responses of the starting and at load changes of the proposed voltage controller are proved by simulations and experiments.