• Title/Summary/Keyword: DC power grid

Search Result 477, Processing Time 0.024 seconds

A Seamless Transfer Method of Bidirectional DC-DC Converter for ESS in DC Micro-grids (DC 마이크로그리드에서 에너지 저장장치를 위한 양방향 DC-DC컨버터의 무순단 절체 제어기법)

  • Kwon, Min-Ho;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.194-200
    • /
    • 2014
  • In DC micro-grid system energy storage systems (ESS) are responsible for storing energy and balancing power. Also, control target of the bidirectional DC-DC converter(BDC) for ESS should be changed depending on the operating mode. During the grid connected mode, the BDC controls the battery current or voltage. When a grid fault occurs, the BDC should change the control target to regulate the DC-bus. The BDC with conventional control method may experience large transient state during the mode change. This paper proposes a control method of BDC for ESS. The proposed control method is able to provide autonomous and seamless mode transfer by a variable current limiter. To validate the proposed concept, simulation results using PSIM and experimental results from a 2kW prototype are provided.

Single Phase Five Level Inverter For Off-Grid Applications Constructed with Multilevel Step-Up DC-DC Converter (멀티레벨 승압 DC-DC 컨버터와 구성된 독립형 부하를 위한 단상 5레벨 인버터)

  • Anvar, Ibadullaev;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.319-328
    • /
    • 2020
  • The recent use of distributed power generation systems constructed with DC-DC converters has become extremely popular owing to the rising need for environment friendly energy generation power systems. In this study, a new single-phase five-level inverter for off-grid applications constructed with a multilevel DC-DC step-up converter is proposed to boost a low-level DC voltage (36 V-64 V) to a high-level DC bus (380 V) and invert and connect them with a single-phase 230 V rms AC load. Compared with other traditional multilevel inverters, the proposed five-level inverter has a reduced number of switching devices, can generate high-quality power with lower THD values, and has balanced voltage stress for DC capacitors. Moreover, the proposed topology does not require multiple DC sources. Finally, the performance of the proposed topology is presented through the simulation and experimental results of a 400 W hardware prototype.

Power Hardware-in-the-Loop (PHIL) Simulation Testbed for Testing Electrical Interactions Between Power Converter and Fault Conditions of DC Microgrid (컨버터와 DC 마이크로그리드 사고 상황의 상호작용을 검증하기 위한 실시간 전력 시뮬레이션 테스트 베드)

  • Heo, Kyung-Wook;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.150-157
    • /
    • 2021
  • Nowadays, a DC microgrid that can link various distributed power sources is gaining much attention. Accordingly, research on fault situations, such as line-to-line and line-to-ground faults of the DC microgrid, has been conducted to improve grid reliability. However, the blackout of an AC system and the oscillation of a DC bus voltage have not been reported or have not been sufficiently verified by previous research. In this study, a 20 kW DC microgrid testbed using a power HIL simulation technique is proposed. This testbed can simulate various fault conditions without any additional grid facilities and dangerous experiments. It includes the blackout of the DC microgrid caused by the AC utility grid's blackout, a drastic load increment, and the DC bus voltage oscillation caused by the LCL filter of the voltage source converter. The effectiveness of the proposed testbed is verified by using Opal-RT's OP5707 real-time simulator with a 3 kW prototype three-port dual-active-bridge converter.

MG Operation Technique based on DC-Grid Stability using ESS (ESS를 활용한 DC-Grid 안정성 기반 MG 운영 기법)

  • Jong-Cheol Kim;Chun-Sung Kim;Yong-Un Park;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1269-1278
    • /
    • 2023
  • This paper presents an operational technique that can secure the stability of DC-Grid centering on MG operated based on ESS in multiple MG where three DC-based microgrid(MG) are interconnected. MG1(PV 600kWp, ESS 1.5MWh) has an 830Vdc grid voltage, MG2(PV 300kWp, ESS 1.1MWh) and MG3(PV 100kWp, ESS 500kWh) are DC-based MG with a 750Vdc grid voltage, and MG1 and MG2, 3 are linked by separate DC/DC converters (BTB). In order to keep different grid voltages stable, the power transmission capacity between MG1 and two MG(MG2, MG3) connected with an independent BTB converter was adjusted to secure the overall stability of the system, and this was verified by confirming that the surplus capacity of ESS was maintained in actual operation.

LVRT Control Strategy of Grid-connected Wind Power System (계통 연계형 풍력 발전 시스템의 LVRT 제어 전략)

  • Shin, Ho-Joon;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.182-190
    • /
    • 2011
  • This paper proposes a LVRT (Low Voltage Ride Through) control strategy which should be satisfied by grid-connected wind power system when grid faults occur. The LVRT regulation indicates rules or actions which have to be executed according to the voltage dip ratio and the fault duration. Especially the wind power system has to support the grid with specified reactive current to secure the grid stability when voltage reduction ratio is over 10%. The LVRT regulation in this paper is based on the German Grid Code and full-scale variable speed wind power conversion system is considered for LVRT control strategy. The proposed LVRT control strategy satisfies not only LVRT regulation but also makes power balance between wind turbine and power system through additional DC link voltage regulation algorithms. Because it is impossible to control grid side power when the 3-phase to ground fault occurs, the DC link voltage is controlled by a generator side inverter using the DC link voltage control strategy. Through the simulation and experiment result, the proposed LVRT control strategy is evaluated and its effectiveness is verified.

A Smooth LVRT Control Strategy for Single-Phase Two-Stage Grid-Connected PV Inverters

  • Xiao, Furong;Dong, Lei;Khahro, Shahnawaz Farhan;Huang, Xiaojiang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.806-818
    • /
    • 2015
  • Based on the inherent relationship between dc-bus voltage and grid feeding active power, two dc-bus voltage regulators with different references are adopted for a grid-connected PV inverter operating in both normal grid voltage mode and low grid voltage mode. In the proposed scheme, an additional dc-bus voltage regulator paralleled with maximum power point tracking controller is used to guarantee the reliability of the low voltage ride-through (LVRT) of the inverter. Unlike conventional LVRT strategies, the proposed strategy does not require detecting grid voltage sag fault in terms of realizing LVRT. Moreover, the developed method does not have switching operations. The proposed technique can also enhance the stability of a power system in case of varying environmental conditions during a low grid voltage period. The operation principle of the presented LVRT control strategy is presented in detail, together with the design guidelines for the key parameters. Finally, a 3 kW prototype is built to validate the feasibility of the proposed LVRT strategy.

Improved Conditional Integrator Anti-Windup Method for Seamless Transfer of Bidirectional DC-DC Converter in Grid-Connected Battery Energy Storage System (계통연계형 배터리 에너지저장장치용 양방향 DC-DC 컨버터의 무순단 절체를 위한 조건부 적분 안티-와인드업 연구)

  • Eom, Jun-Yong;Choi, Sung-Jin;Lee, Hong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.333-342
    • /
    • 2020
  • Power exchanges between the grid and the battery through a bidirectional DC-DC converter are essential for DC microgrid systems. In general, the battery is charged when the grid is connected, and the system is powered by the battery when the grid is disconnected. In this mode transition, the saturation of the voltage controller slows down output response and produces large transient errors in DC link voltage. To solve this problem, a novel anti-windup design is proposed to improve anti-windup performance further. The proposed method stabilizes DC bus voltage through a wider range of battery voltage with faster transition compared with that of conventional methods. The proposed method is verified through an experimental setup composed of a 125 W laboratory-scale DC microgrid system.

Low Frequency Current Reduction using a Quasi-Notch Filter operated in Two-Stage DC-DC-AC Grid-Connected Systems (Quasi-Notch Filter를 이용한 DC-DC-AC 계통연계형 단상 인버터에서의 저주파 전류 감소 기법)

  • Jung, Hong-Ju;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.276-282
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a dc-dc converter and a dc-ac converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains double-fundamental frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new double-fundamental current reduction-scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small-signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.

Research on a Multi-Objective Control Strategy for Current-source PWM Rectifiers under Unbalanced and Harmonic Grid Voltage Conditions

  • Geng, Yi-Wen;Liu, Hai-Wei;Deng, Ren-Xiong;Tian, Fang-Fang;Bai, Hao-Feng;Wang, Kai
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.171-184
    • /
    • 2018
  • Unbalanced and distorted grid voltages cause the grid side current of a current source PWM rectifier to be heavily distorted. They can also cause the DC-link current to fluctuate with a huge amplitude. In order to enhance the performance of a current-source PWM rectifier under unbalanced and harmonic grid voltage conditions, a mathematical model of a current-source PWM rectifier is established and a flexible multi-objective control strategy is proposed to control the DC-link current and grid-current. The fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic components of the grid voltage are first separated with the proposed control strategy. The grid current reference are optimized based on three objectives: 1) sinusoidal and symmetrical grid current, 2) sinusoidal grid current and elimination of the DC-current $2^{nd}$ order fluctuations, and 3) elimination of the DC-current $2^{nd}$ and $6^{th}$ order fluctuations. To avoid separation of the grid current components, a multi-frequency proportional-resonant controller is applied to control the fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic current. Finally, experimental results verify the effectiveness of proposed control strategy.

A Second-order Harmonic Current Reduction with a Fast Dynamic Response for a Two-stage Single-phase Grid-connected Inverter

  • Jung, Hong-Ju;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1988-1994
    • /
    • 2014
  • In a single-phase grid-connected power system consisting of a DC/DC converter and a DC/AC converter, the current drawn from renewable energy sources has a tendency to be pulsated and contains second-order frequency ripple components, which results in several drawback such as a power harvesting loss and a shortening of the energy source's life. This paper presents a new second-order harmonic current reduction scheme with a fast dc-link voltage loop for two-stage dc-dc-ac grid connected systems. In the frequency domain, an adequate control design is performed based on the small signal transfer function of a two-stage dc-dc-ac converter. To verify the effectiveness of proposed control algorithm, a 1 kW hardware prototype has been built and experimental results are presented.