• 제목/요약/키워드: DC System

Search Result 4,679, Processing Time 0.036 seconds

Application of a Robust Fuzzy Sliding Mode Controller Synthesis on a Buck-Boost DC-DC Converter Power Supply for an Electric Vehicle Propulsion System

  • Allaoua, Boumediene;Laoufi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The development of electric vehicle power electronics system control, composed of DC-AC inverters and DC-DC converters, attract much research interest in the modern industry. A DC-AC inverter supplies the high-power motor torques of the propulsion system and utility loads of electric vehicles, whereas a DC-DC converter supplies the conventional low-power and low-voltage loads. However, the need for high-power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. The nonlinear control of power converters is an active research area in the field of power electronics. This paper focuses on the use of the fuzzy sliding mode strategy as a control strategy for buck-boost DC-DC converter power supplies in electric vehicles. The proposed fuzzy controller specifies changes in control signals based on the surface and knowledge on surface changes to satisfy the sliding mode stability and attraction conditions. The performance of the proposed fuzzy sliding controller is compared to that of the classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law, which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variations in load resistance and input voltage in the studied converter.

Implementation of a Condition Monitoring System for Mold Transformers in DC Substations (DC 변전소 몰드변압기 온라인 상태 감시 시스템 구현)

  • Park, Young;Jung, Ho-Sung;Park, Chul-Min;Jang, Soon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1788-1794
    • /
    • 2011
  • The mold transformer is a complex and critical component of DC substations in Metro system. In this paper, a cost effective and intelligent condition monitoring system for mold transformers in DC substations was developed. This paper also provides an overview of the management program using PD (partial discharge) data on mold transformers. Prior to application of the proposed system to Metro DC substations, experiments were performed at the metro line substation located in Seoul and presented case studies for the use of the intelligent condition monitoring system for mold transformer in DC substations. The experiment results indicated that the developing system can be need in helping mange the risk of unexpected failure of mold type transformers.

A Study on the Motor Control System Driven by Battery (배터리 구동 모터제어시스템에 관한 연구)

  • 김홍건;강영우;유기현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.195-200
    • /
    • 2003
  • An electric vehicle uses the system to a power source whether it limps a high efficiency, without environmental pollution It coincides the best at the 21th century environmental regulation and energy frugality. The motor control system using DC-DC converter is carried out in this study. The Present control system is structured the better condition than that of the AC-DC converter with DC-AC inverter. Further, a vehicle dynamics analysis is peformed for the case of Mini-Baja it is found that the analysis dynamic system for the Mini-Baja gives a good design parameters.

  • PDF

Design of a laboratory-scale superconducting DC transmission line (모델급 초전도 직류 송전 선로의 설계)

  • Kim, Sung-Kyu;Dinh, Minh-Chau;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1102-1103
    • /
    • 2015
  • The researchers worldwide have been trying to apply high temperature superconducting wire for power system devices. High voltage direct current (HVDC) transmission system has been used for bulk and long-distance power transmission. The authors designed a laboratory-scale superconducting DC transmission line to investigate its applicability to an HVDC system. The superconducting DC transmission line was simulated in connection to a laboratory-scale HVDC system using PSCAD/EMTDC. The operating characteristics of the superconducting DC transmission line connected to HVDC system and the effects of the superconducting DC transmission line on HVDC system were analyzed and compared with the results of a conventional DC transmission line. The results of operating characteristics for the superconducting DC transmission line were discussed in detail.

  • PDF

Two Stage DC/DC Converter for Photovoltaic Generation (태양광 발전용 2단 구성 DC/DC 컨버터)

  • Yoon, Kwang-Ho;Phum, Sopheak;Kim, Eun-Soo;Won, Jong-Seob;Oh, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.618-626
    • /
    • 2011
  • Solar cell is one of the most important new renewable energy for future energy generation. This paper presents a novel two stage DC/DC converter topology for PV PCSs. The proposed converter consists of an interleaved boost converter and a two-tank LLC resonant converter which is connected in parallel in primary and series in secondary. The main idea of this topology is that the system can achieve either unilateral or bilateral operations due to the input voltage level of the PV module, which leads to a better performance. The operating schemes on the proposed converter are analyzed and described. A 2.2kW prototype product is built, tested and verified.

A Study on the Efficiency of Energy Storage System Applied to the Power Traction System of DC Electric Railway (직류전기철도에서 운행시격에 따른 에너지저장장치의 효율에 관한 연구)

  • Kim, Sung-Dae;Choi, Kyu-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.754-760
    • /
    • 2011
  • In the DC traction system, a large load current of electric railcar leads to a voltage drop when a vehicle starts, and the regenerative power generated by brake system increases the catenary voltage. To minimize the voltage fluctuation during the train operation and make use of the regenerative power, several types of energy storage systems are being studied. The energy storage system that is being recently introduced consists of the supercapacitors for energy storage and the bi-direction DC/DC converter for charge/discharge control. The efficiency of the energy storage system depends on the train operation pattern. In this paper, the operation efficiency of the energy storage system was quantitatively analyzed via simulation study taking consideration of the train operation patterns. The simulation was conducted changing the headway of trains with the energy storage system that uses the bi-direction DC/DC converter and supercapacitor. The simulation results showed that the operation efficiency of the energy storage system increases as the headway increase.

  • PDF

Development of 3.0[kW]class Fuel Cell Power Conversion System (3[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.54-63
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage $380[V_{DC}]$ and a PWM inverter with LC filter to convent the DC voltage to single-phase $220[V_{AC}]$. Expressly, a tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed high frequency isolated ZVZCS PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of 93-97[%]is obtained over the wide output voltage regulation ranges and load variations.

Reduced Order Identification and Stability Analysis of DC-DC Converters

  • Ali, Husan;Zheng, Xiancheng;Wu, Xiaohua;Zaman, Haider;Khan, Shahbaz
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.453-463
    • /
    • 2017
  • This paper discusses the measurement of frequency response functions for various dc-dc converters. The frequency domain identification procedure is applied to the measured frequency responses. The identified transfer functions are primarily used in developing behavioral models for dc-dc converters. Distributed power systems are based upon such converters in cascade, parallel and several other configurations. The system level analysis of a complete system becomes complex when the identified transfer functions are of high order. Therefore, a certain technique needs to be applied for order reduction of the identified transfer functions. During the process of order reduction, it has to be ensured that the system retains the dynamics of the full order system. The technique used here is based on the Hankel singular values of a system. A systematic procedure is given to retain the maximum energy states for the reduced order model. A dynamic analysis is performed for behavioral models based on full and reduced order frequency responses. The close agreement of results validates the effectiveness of the model order reduction. Stability is the key design objective for any system designer. Therefore, the measured frequency responses at the interface of the source and load are also used to predict stability of the system.

Comparison of PID Controllers by Using Linear and Nonlinear Models for Control of Mobile Robot Driving System (모바일 로봇 구동 시스템 제어를 위한 선형 및 비선형 모델 기반 PID 제어기 성능 비교)

  • Jang, Tae Ho;Kim, Youngshik;Kim, Hyeontae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.183-190
    • /
    • 2016
  • In this study, we conduct linear and nonlinear modeling of the DC motor driving system of a wheeled mobile robot, which is a nonlinear system involving dead zone, friction, and saturation. The DC motor driving system consists of a DC motor, a wheel, and gears. A linear DC motor driving system is modeled using a steady-state response and parameter measurements. A nonlinear DC motor driving model is identified with the use of the Hammerstein-Wiener method. By using these models, PID controllers for the DC motor system are then established. Each PID controller is applied as a low-level controller in order to achieve posture stabilization control for the real mobile robot. We also compare the performance of the proposed PID controllers in posture stabilization experiments by using several different final robot postures.

Study on the High Efficiency Bi-directional DC/DC Converter Topology Using Multi-Phase Interleaved Method (Multi-Phase 인터리브드 방식을 이용한 고효율 양방향 DC/DC 컨버터 토폴로지에 관한 연구)

  • Choi, Jung-Sik;Park, Byung-Chul;Chung, Dong-Hwa;Oh, Seung-Yeol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.82-90
    • /
    • 2015
  • This paper proposes an efficient bi-directional DC/DC converter topology using multi-phase interleaved method for power storage system. The proposed converter topology is used for a power storage system using a vanadium redox flow battery(VRFB) and is configured to enable bidirectional power flow for charging and discharging of VRFB. Proposed DC/DC converter of the 4 leg method is reduced to 1/4 times the rating of the reactor and the power semiconductor device so can be reduce the system size. Also, proposed topology is obtained the effect of four times the switching frequency as compared to the conventional converter in each leg with a 90 degree phase shift 4 leg method. This can suppress the reduction of the life of the secondary battery because it is possible to reduce the current ripple in accordance with the charging and discharging of VRFB and may increase the efficiency of the entire system. In this paper, it proposed bidirectional high-efficiency DC/DC converter topology Using multi-phase interleaved method and proved the validity through simulations and experiments.