• 제목/요약/키워드: DC Servo Motor

검색결과 288건 처리시간 0.024초

직류 서보 전동기 센서리스 속도제어를 위한 뉴로-퍼지 관측기 설계 (Design of a Neuro-Fuzzy Observer for Speed-Sensorless Control of DC Servo Motor)

  • 안창환
    • 전기학회논문지P
    • /
    • 제56권3호
    • /
    • pp.129-135
    • /
    • 2007
  • This paper deals with speed-sensorless control of DC servo motor using Neuro-Fuzzy Observer. DC servo motor has very low rotor inertia and excellent response characteristic and it is very useful to control torque and speed. It is easy to detect the voltage and current and resolver or encoder is used to measure a rotor speed. But it has a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve this problem, it is studied to detect a speed of DC servo motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this paper, the gain of the observer is properly set up using the Neuro-Fuzzy control and Neuro-Fuzzy Observer that have a superior transient characteristic and is easy to implement compared the existing method is designed. It calculates the differentiation of the rotor current directly using the rotor current measured in the DC servo motor and estimates the speed of the rotor using the differentiation. Proposed speed sensorless control method is performed using the estimated speed. Also, it is proved feasibility of the proposed observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200[w] DC servo motor starting system.

직류 서보 전동기 제어를 위한 퍼지-슬라이딩 관측기 설계 (Design of a Fuzzy-Sliding Observer for Control of DC Servo Motor)

  • 고봉운;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권5호
    • /
    • pp.338-344
    • /
    • 2004
  • This paper presents a sensorless speed control of a DC servo motor using a fuzzy-sliding observer in the presences of load disturbances. A fuzzy-sliding observer is proposed in order to estimate the speed of a motor rotor. First, a sliding observer is used to estimate the derivative of the armature current directly using the armature current mesured in the DC servo motor. Second, the optimal gain of the Luenberger observer is set up using the fuzzy control. Experimental results show the good performance in the DC servo motor system with the proposed fuzzy-sliding observer.

고이득 관측기를 이용한 센서없는 직류서보전동기의 속도 제어 (Speed-Sensorless Control of DC Servo Motor Using a High Gain Observer)

  • 김상훈;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권10호
    • /
    • pp.583-590
    • /
    • 2003
  • This paper deals with speed control of DC servo motor using a high gain obserber. It was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the estimated speed signal. Also, PI controller was used in speed controller. In order to verify the performance of the high gain observer which is proposed in this paper, it is compared estimate performance of Luenberger Observer and High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with high gain observer in the speed control of DC servo motor.

직류 서보전동기 저속운전 성능개선을 위한 퍼지-슬라이딩 관측기설계 (Design of a Fuzzy-Sliding Observer for improvement of low speed operation of DC Servo Motor)

  • 고봉운;김상훈;김낙교
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.153-156
    • /
    • 2004
  • This Paper deals with speed control of DC servo motor using a Fuzzy-Sliding observer. Speed sensor detect a speed of rotor continuously. But It have a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system To solve the problem, it is studied to detect a speed of DC motor without sensor In particular, study on the method to estimate the speed using the observer is performed a lot. In this parer, the gain of the observer is properly set up using the fuzzy control and sliding observer that have a superior transient characteristic and is easy to implement compared the exist ing method is designed. It estimate the derivative of the armature current directly using the armature current measured in the DC motor. It estimate the speed of the rotor using the differentiation. It is Proposed speed sensor less control method using the estimated speed. Optimal gain of Luenberger observer is set up using the fuzzy control and adapted speed control of DC servo motor. It is proved excellence and feasibility of the presented observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200W DC servo motor start ing system.

  • PDF

퍼지동조 속도관측기를 이용한 직류서보전동기의 저속운전 특성 개선 (Improvement of Low Speed Operation Characteristic of DC Servo Motor Using a Fuzzy Tuning Speed Observer)

  • 안창환
    • 전기학회논문지P
    • /
    • 제57권3호
    • /
    • pp.244-249
    • /
    • 2008
  • This paper deals with speed control of DC servo motor using a Fuzzy tuning observer. Speed sensor detect a speed of rotor continuously. But it have a limit as a driving speed to detect speed precisely. So it is problem to improve the performance of the driving system. To solve the problem, it is studied to detect a speed of DC motor without sensor. In particular, study on the method to estimate the speed using the observer is performed a lot. In this parer, the gain of the observer is properly set up using the fuzzy observer. The fuzzy observer has a superior transient characteristic and is easy to implement compared the existing method is designed. It estimate the derivative of the armature current directly using the armature current measured in the DC motor. It estimate the speed of the rotor using the differentiation. It is proposed speed sensorless control method using the estimated speed. Optimal gain of Luenberger observer is set up using the fuzzy observer and adapted speed control of DC servo motor low speed operation. It is proved excellence and feasibility of the presented observer from the comparison tested a case with a speed sensor and a case without a speed sensor which used a highly efficient drive and 200W DC servo motor starting system.

Unknown Parameter Identifier Design of Discrete-Time DC Servo Motor Using Artificial Neural Networks

  • Bae, Dong-Seog;Lee, Jang-Myung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.207-213
    • /
    • 2000
  • This paper introduces a high-performance speed control system based on artificial neural networks(ANN) to estimate unknown parameters of a DC servo motor. The goal of this research is to keep the rotor speed of the DC servo motor to follow an arbitrary selected trajectory. In detail, the aim is to obtain accurate trajectory control of the speed, specially when the motor and load parameters are unknown. By using an artificial neural network, we can acquire unknown nonlinear dynamics of the motor and the load. A trained neural network identifier combined with a reference model can be used to achieve the trajectory control. The performance of the identification and the control algorithm are evaluated through the simulation and experiment of nonlinear dynamics of the motor and the load using a typical DC servo motor model.

  • PDF

고이득 관측기를 이용한 직류서보전동기의 속도 센서리스 속도제어 (Speed-Sensorless Speed Control of DC Servo Motor Using a High Gain Observer)

  • 김상훈;김명준;윤광호;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2203-2205
    • /
    • 2003
  • In this thesis, it is a purpose to carry out speed control of DC servo motor without using encoder and the resolver which are speed sensor of DC servo motor and it should use estimate algorithm or observer and must assume a speed in order to control speed sensorless. Therefore, high gain observer was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the speed that assumed done in the thesis. Also, implementation used easy PI controller in speed-controller of DC motor though it was simple. It is compared estimate performance of Luenberger and high gain observer in a way of computer simulation in order to verify performance of the high gain observer which proposed in this thesis, and proved excellency of the high gain observer. And the thesis proved that smooth speed sensorless control of DC servo motor was implemented in invariable driving.

  • PDF

자립형 이동로봇 구동을 위한 직류 서보전동기 PLL 속도제어 시스템에 관한 연구 (A Study on PLL Speed Control System of DC Servo Motor for Mobile Robot Drive)

  • 홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권3호
    • /
    • pp.60-69
    • /
    • 1993
  • The speed control associated with dc servo motors for direct-drive applications of mobile robot is considered in this study. Robot is moved by power wheeled steering of two dc servo motors mounted to it. In order to cooperate with micro-computer and to achieve the high-performance operation of dc servo motor, speed control system is composed of a digital Phase Locked Loop and H-type drive circuit. And the motor is driven by Pulse Width Modulations. In controlling PWM, it is modified to compose of H-type drive circuit with feedback diodes and switching transistor and design of control sequence so that it may show linear characteristics. As a result, speed characteristics of motor showed linear features. In order to get data on design of PLL control system, the parameters of 80[W[ motor & robot device is measured by simple software control. The PLL speed control system is schemed and designed by leaner drive circuit and measured parameters. A complete speed control system applied to 80[W] dc servo motor showed good linearity, stability and high response. Also, it is verified that the PLL speed control system has good compatibility as a mobile robot driver.

  • PDF

피지동조 고이득 관측기를 이용한 속도센서없는 직류 서보전동기의 속도제어 (Speed Control Of Sensorless DC Servo Motor Using Fuzzy-Tuning High-Gain Observer)

  • 강성호;윤광호;김상훈;김낙교;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.480-483
    • /
    • 2003
  • This paper deals with speed control of Sensorless DC servo motor using a FTHGO(FuzEy-Tuning High Gain observer). In this paper, we improved the problem from row speed section, the problem of sensor for detecting speed of motor, using FTHGO(Fuzzy-Tuning High-Gain Observer) with fuzzy control technique which is a class of adaptive control technique. In order to verify the performance of the FTHGO(Fuzzy-Tuning High Gain Observer) which is proposed in this paper, it is proved from the experiment to compare the case with a speed sensor to the case with FTHGO(Fuzzy-Tuning High Gain observer) in the speed control of DC servo motor.

  • PDF

2자유도 보상법에 의한 직류서보전동기의 강인한 속도제어시스템 구현 (Implementation of the robust speed control system for DC servo motor using TDF compensator method)

  • 김동완
    • 전기학회논문지P
    • /
    • 제52권2호
    • /
    • pp.74-80
    • /
    • 2003
  • In this paper, a robust two-degree-of-freedom(TDF) the speed control system using $H_{\infty}$ optimization method and real genetic algorithm is proposed for the robust stability and the robust performance in dc servo motor system. This control system composed of feedback and feedforward controller. The feedback(FB) controller with $H_{\infty}$ optimization method is designed for real genetic algorithm that is model matching problem using mixed sensitivity function. The feedforward(FF) controller with $H_{\infty}$optimization method is minimized the error between transfer function of the optimal model and the overall transfer function. The proposed robust two-degree-of-freedom speed control system is simulated to the dc servo motor. By the simulation, feedback controller can obtain the robust stability property and feedforward controller can obtain the robust performance property under modelling error. The performance of the dc servo motor is analyzed by the experiment setting. The validity of the proposed method is verified through being compared with pid(proportional integrated differential)control system design method for the dc servo motor.