• Title/Summary/Keyword: DC Output Voltage control

Search Result 728, Processing Time 0.029 seconds

Improved Single-Stage AC-DC LED-Drive Flyback Converter using the Transformer-Coupled Lossless Snubber

  • Jeong, Gang-Youl;Kwon, Su-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.644-652
    • /
    • 2016
  • This paper presents an improved single-stage ac-dc LED-drive flyback converter using the transformer-coupled lossless (TCL) snubber. The proposed converter is derived from the integration of a full-bridge diode rectifier and a conventional flyback converter with a simple TCL snubber. The TCL snubber circuit is composed of only two diodes, a capacitor, and a transformer-coupled auxiliary winding. The TCL snubber limits the surge voltage of the switch and regenerates the energy stored in the leakage inductance of the transformer. Also, the switch of the proposed converter is turned on at a minimum voltage using a formed resonant circuit. Thus, the proposed converter achieves high efficiency. The proposed converter utilizes only one general power factor correction (PFC) control IC as its controller and performs both PFC and output power regulation, simultaneously. Therefore, the proposed converter provides a simple structure and an economic implementation and achieves a high power factor without the need for any separate PFC circuit. In this paper, the operational principle of the proposed converter is explained in detail and the design guideline of the proposed converter is briefly shown. Experimental results for a 40-W prototype are shown to validate the performance of the proposed converter.

SINGLE-PHASE CURRENT SOURCE INVERTER WITH PULSE AREA MODULATION SCHEME FOR SOLAR POWER CONDITIONER

  • Hirachi, K.;Matsumoto, K.;Ishitobi, M.;Ishibashi, M.;Nakaoka, M.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.724-729
    • /
    • 1998
  • In general, a single-phase current-fed PWM inverter using IGBTs has some unique advantages for small scale distributed utility-interactive power supply system as compared with voltage-fed PWM inverter. In particular, this is more suitable and acceptable for a non-isolated type utility-interactive power conditioner, which is going to be widely used for residential solar photovoltaic (PV) power generation system in Japan. However, this current-fed PWM inverter has a significant disadvantage. The output current of this inverter includes large harmonic contents when the inductance of smoothing reactor in its DC side is not large enough to eliminate its current ripple components of this inverter. In order to overcome this problem, a new conceptual pulse area modulation scheme for this inverter is introduced in difference with conventional PWM strategy. This paper presents a new effective control implementation of this PV power conditioner which is able to reduce the harmonic component in the output current produced by the single-phase current-fed PWM inverter even when the ripple current in the smoothing DC reactor is relatively large. The operating principle of the proposed control strategy introdued for this inverter system is described, and its simulation results are evaluated and discussed herein.

  • PDF

Four-switch Three-phase Inverter control method applied by simplified Space Vector PWM (간략화 된 SVPWM을 적용한 4-Switch 3-Phase Inverter의 제어 방법)

  • Son, Sang-Hun;Park, Young-Joo;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.283-292
    • /
    • 2016
  • The performance of 4-switch 3-phase inverter(: FSTPI) which replace two switches of 6-switch 3-phase inverter(: SSTPI) is mainly affected by the compensator unbalanced voltages and output voltage control method. This paper proposes a DC offset current injection method to compensate the capacitor unbalanced voltages for FSTPI. A simplified SVPWM method which can be applied to FSTPI is also proposed. The validity of the proposed methods is verified by simulation and experiment using SPMSM.

The Parallel Operation of Single Phase PWM Rectifier using IGBT (IGBT를 이용한 단산 PWM정류기 병렬운전)

  • 이현원;장성영;김연준;이광주;김남해
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.122-125
    • /
    • 1999
  • The AC-to-DC single-phase PWM rectifier for traction applications using high power semiconductor, IGCT is made and tested. Parallel operation of two PWM converter is adopted for increasing capacity of converters. For reducing harmonics, the harmonic content is eliminated by the phase shift between two converters switching phase. The output voltage control is achieved by interns calculation without detecting the input current. The part of PLL used for controlling power factor is simply implemented by software.

  • PDF

Effects of Wind Generation Uncertainty and Volatility on Power System Small Signal Stability

  • Shi, Li-Bao;Kang, Li;Yao, Liang-Zhong;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.60-70
    • /
    • 2014
  • This paper discusses the impacts of large scale grid-connected wind farm equipped with permanent magnet synchronous generator (PMSG) on power system small signal stability (SSS) incorporating wind generation uncertainty and volatility. Firstly, a practical simplified PMSG model with rotor-flux-oriented control strategy applied is derived. In modeling PMSG generator side converter, the generator-voltage-oriented control strategy is utilized to implement the decoupled control of active and reactive power output. In modeling PMSG grid side converter, the grid-voltage-oriented control strategy is applied to realize the control of DC link voltage and the reactive power regulation. Based on the Weibull distribution of wind speed, the Monte Carlo simulation technique based is carried out on the IEEE 16-generator-68-bus test system as benchmark to study the impacts of wind generation uncertainty and volatility on small signal stability. Finally, some preliminary conclusions and comments are given.

Analysis and Implementation of LC Series Resonant Converter with Secondary Side Clamp Diodes under DCM Operation for High Step-Up Applications

  • Jia, Pengyu;Yuan, Yiqin
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.363-379
    • /
    • 2019
  • Resonant converters have attracted a lot of attention because of their high efficiency due to the soft-switching performance. An isolated high step-up converter with secondary-side resonant loops is proposed and analyzed in this paper. By placing the resonant loops on the secondary side, the current stress for the resonant capacitors is greatly reduced. The power loss caused by the equivalent series resistance of the resonant capacitor is also decreased. Clamp diodes in parallel with the resonant capacitors ensure a unique discontinuous current mode in the converter. Under this mode, the active switches can realize soft-switching during both turn-on and turn-off transitions. Meanwhile, the reverse-recovery problems of diodes are also alleviated by the leakage inductor. The converter is essentially a step-up converter. Therefore, it is helpful for decreasing the transformer turn-ratio when it is applied as a high step-up converter. The steady-state operation principle is analyzed in detail and design considerations are presented in this paper. Theoretical conclusions are verified by experimental results obtained from a 500W prototype with a 35V-42V input and a 400V output.

Neutral-Point Voltage Ripple Reduction of High Frequency Injection Sensorless Control of IPMSM Fed by a Three-Level Inverter (3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감)

  • Cho, Dae-Hyun;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.867-876
    • /
    • 2020
  • This paper proposes a neutral-point voltage ripple reduction of high frequency injection sensorless control of IPMSM fed by a three-level inverter. The high frequency voltage injection method has been successfully applied to sensorless control for IPMSM at low speed region. In the process of high frequency voltage injection sensorless control for IPMSM, the neutral-point voltage ripple is increased. It should be reduced because it distorts the output current and decreases a life time of DC-link capacitor. The proposed method in this paper reduces the neutral-point voltage ripple by compensating the reference voltage, and the compensation value is calculated simply with reference voltages and currents. The effectiveness of the proposed method is verified by simulation results.

A Wide Input Range Active Multi-pulse Rectifier For Utility Interface Of Power Electronic Converters

  • Hahn Jaehong;Enjeti Prasad N.;Park In-Gyu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.512-517
    • /
    • 2001
  • In this paper, a wide input range active multi-pulse rectifier for utility interface of power electronic converters is proposed. The scheme combines multi-pulse method using a V-A transformer and boost rectifier modules. A current control scheme for the rectifier modules is proposed to achieve sinusoidal line currents in the utility input over a wide input range of input voltage and output load conditions. A design example is included for a 208V to 460V input, $700V_{dc}$ do 10kW output rectifier system. Simulation results are shown.

  • PDF

Pantograph Detachment Detector and Control Scheme for a PWM rectifier Considering Pantograph Detachement Condition (전동차용 PWM 정류기를 위한 집전기(pantograph) 접점상태 검출방법 및 비접촉상태를 고려한 PWM 정류기 제어기법)

  • Song Hong-Seok;Nam Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.275-278
    • /
    • 2003
  • The pantograph contact can be disrupted due to irregularities in the motion. The pantograph detachment prohibits the current flow and makes the system uncontrollable. During the pantograph detachment period, the control error are accumulated by the integral property of the controller. The output of the controller, therefore, can be induced to be an extremely large value. When the pantograph is reattached, the extremely large output of the controllers causes a very high overshoot (or under-shoot) of the line current and the DC-link voltage. This work proposes a new method for detecting the pantograph bouncing conditions and designs a controller considering such conditions based on the pantograph bouncing detector.

  • PDF

Multi-level Inverter Using 3-Phase isolated Transformers (3상 절연형 변압기를 이용한 다중레벨)

  • Lee, Hwa-Chun;Song, Sung-Gun;Park, Sung-Jun;Kim, Kwang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1134-1135
    • /
    • 2007
  • In this paper, we proposed the isolated multi-level inverter using 3-phase transformers. It makes possible to use a single DC power source due to employing low frequency transformers. In this inverter, the number of transformer could be reduced comparing with an exiting 3-phase multi-level inverter using single phase transformer. Also, using phase angle control method with switching frequency equal to output fundamental frequency, harmonics component of output voltage and switching losses can be reduced. Finally, we made a prototype inverter to clarify the proposed electric circuit and reasonableness of control signal.

  • PDF