• Title/Summary/Keyword: DC Converter

Search Result 3,431, Processing Time 0.026 seconds

Investigation and Circuit Analysis for DC-DC Converter (DC-DC Converter 특성검토 및 회로해석)

  • Hwang, Su-Seol;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • A DC-DC converter is a device that accepts a DC input voltage and produces a DC output voltage. Typically the output produced is at a different voltage level than the input. In addition, DC-DC converters are used to provide noise isolation, power bus regulation, etc. In this paper, it reviews some kinds of the popular DC-DC converter topolopgies and performs simulation selected basic type of DC-DC Converter.(Buck-type Converter)

  • PDF

Development of Wireless Power Transceiver with Bi-directional DC-DC Converter (양방향으로 동작하는 DC-DC Converter를 이용하는 무선 전력 송수신기 개발)

  • Moon, Young-Jin;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.111-121
    • /
    • 2014
  • A bi-directional DC-DC converter has been developed for a wireless power transceiver which enables a device to receive and transmit power wireless. Generally, the wireless power transceiver requires two DC-DC covnerter and two external inductors. However, the proposed wireless power transceiver requires only one DC-DC converter and one inductor, allowing small form-factor. The bi-directional DC-DC converter implemented in $0.35{\mu}m$ BCDMOS process operates as a buck converter at the wireless power receiving mode and the power efficiency is 91% when the ouput power is 3W. In the wireless power transmitter mode, the DC-DC converter operates as a boost converter. With the bi-directional DC-DC converter and the proposed efficiency maximizing techniques, the power efficiency of wireless power transceiver is 81.7% in receiver mode and 76.5% in transmitter mode.

Design of DC-DC Buck Converter Using Micro-processor Control (마이크로프로세서 제어를 이용한 DC-DC Buck Converter 설계)

  • Jang, In-Hyeok;Han, Ji-Hun;Lim, Hong-Woo
    • Journal of Advanced Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.349-353
    • /
    • 2012
  • Recently, Mobile multimedia equipments as smart phone and tablet pc requirement is increasing and this market is also being expanded. These mobile equipments require large multi-media function, so more power consumption is required. For these reasons, the needs of power management IC as switching type dc-dc converter and linear regulator have increased. DC-DC buck converter become more important in power management IC because the operating voltage of VLSI system is very low comparing to lithium-ion battery voltage. There are many people to be concerned about digital DC-DC converter without using external passive device recently. Digital controlled DC-DC converter is essential in mobile application to various external circumstance. This paper proposes the DC-DC Buck Converter using the AVR RISC 8-bit micro-processor control. The designed converter receives the input DC 18-30 [V] and the output voltage of DC-DC Converter changes by the feedback circuit using the A/D conversion function. Duty ratio is adjusted to maintain a constant output voltage 12 [V]. Proposed converter using the micro-processor control was compared to a typical boost converter. As a result, the current loss in the proposed converter was reduced about 10.7%. Input voltage and output voltage can be displayed on the LCD display to see the status of the operation.

Single Input Multi Output DC/DC Converter: An Approach to Voltage Balancing in Multilevel Inverter

  • Banaei, M.R.;Nayeri, B.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1537-1543
    • /
    • 2014
  • This paper presents a new DC/AC multilevel converter. This configuration uses single DC sources. The proposed converter has two stages. The first stage is a DC/DC converter that can produce several DC-links in the output. The DC/DC converter is one type of boost converter and uses single inductor. The second stage is a multilevel inverter with several capacitor links. In this paper, one single input multi output DC-DC converter is used in order to voltage balancing on multilevel converter. In addition, as compare to traditional multilevel inverter, presented DC/AC multilevel converter has less on-state voltage drop and conduction losses. Finally, in order to verify the theoretical issues, simulation and experimental results are presented.

A New High Efficient Bi-directional DC/DC Converter in the Dual Voltage System

  • Lee Su-Won;Lee Seong-Ryong;Jeon Chil-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.343-350
    • /
    • 2006
  • This paper introduces a new high efficient bi-directional, non-isolated DC/DC converter. Through variations of the topology of the conventional Cuk converter, an optimum bi-directional DC/DC converter is proposed. Voltage and current in the proposed DC/DC converter are continuous. Furthermore, the efficiency in both step-up and step-down mode is improved over that of the conventional bi-directional converter. To prove the validation for the proposed converter, simulations and experiments are executed with a 300W bi-directional converter.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Design and Development of 30W Military Grade DC-DC Converter for Guided Weapon and Aircraft (유도무기 및 항공기 탑재장비용 30W급 군사용 DC-DC 변환장치 개발)

  • Park, Sang-Min;Joo, Dong-Myoung;Chae, Soo-Yong;Kim, Hyung-Jung;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1341-1350
    • /
    • 2017
  • In this paper, a high reliability 30W DC-DC converter is designed considering military standard (MIL-STD) for military applications such as guided weapon and aircraft. The performances and specifications of conventional military grade DC-DC converter are practically analyzed. The requirements for military grade DC-DC converter are established in consideration of MIL-STD and analysis results of conventional product. Two isolated DC-DC converter, forward and fly-back converter, are designed and compared to determine topology. From experimental results under various operating conditions, the forward topology satisfied performances and specifications of MIL-STD for military DC-DC converter.

Research of DC-DC Converter for Ocean Buoy (해상용 브이에 적합한 DC-DC 컨버터 연구)

  • Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.839-844
    • /
    • 2007
  • This paper describes the performance of DC-DC converters for buoy such as buck, boost, and buck-boost. The operating characteristic and charging efficiency with battery, which has a considerable properties about converters with PV(photovoltaic) system, is analyzed in this paper. It is performed by using the MPPT(Maximum Power Point Tracker) algorithm The basic equations of switching operation for converter are described, and the equations are analyzed with according to switch state. Whereas this analysis is directed toward the selection of converter for buoy, it also provides the insight into the behaviour of converter and performance of the proposed algorithm Finally, the suitable DC-DC converter is proposed for buoy, and the characteristic experiment is performed with the buck converter.

Analysis and Implementation of a DC-DC Converter for Hybrid Power Supplies Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1438-1445
    • /
    • 2015
  • A new DC-DC power converter is researched for renewable energy and battery hybrid power supplies systems in this paper. At the charging mode, a renewable energy source provides energy to charge a battery via the proposed converter. The operating principle of the proposed converter is the same as the conventional DC-DC buck converter. At the discharging mode, the battery releases its energy to the DC bus via the proposed converter. The proposed converter is a non-isolated high step-up DC-DC converter. The coupled-inductor technique is used to achieve a high step-up voltage gain by adjusting the turns ratio. Moreover, the leakage-inductor energies of the primary and secondary windings can be recycled. Thus, the conversion efficiency can be improved. Therefore, only one power converter is utilized at the charging or discharging modes. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.

Buck and Half Bridge Series DC-DC Converter (강압형과 하프 브리지 직렬형 DC-DC 컨버터)

  • Kim Chang-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.616-621
    • /
    • 2005
  • We considered of the buck and half bridge series DC-DC converter. It has good applications in areas with low voltage/high current, wide input voltage. The buck converter ratings and the half bridge converter ratings are $36\~72V$ input and 22V/5A output, $19\~24V$ input and 3.3V/30A output, respectively. Developed the buck and half Bridge series DC-DC converter ratings are of $36\~72V$ input and 3.3V/30A output. The buck converter is operated with zero voltage switching process to reduce the switching losses. The $80.1\%\~97.6\%$ of the efficiency is measured at $18.4{\mu}H$ output filter inductance of buck converter. In the half bridge converter, the $86\%\~96.4\%$ efficiency is measured at 150kHz switching frequency with PQI core. In the case of synchronized the buck and half bridge DC-DC converter, the measured efficiency is higher than that of the unsynchronized converter. In the synchronized converter, the maximum efficiency is measured up to $92.3\%$ with PQI core at 150kHz. 7A output.