• Title/Summary/Keyword: DC Arc Plasmatron

Search Result 9, Processing Time 0.038 seconds

Development of the DC-RF Hybrid Plasma Source

  • Kim, Ji-Hun;Cheon, Se-Min;Gang, In-Je;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.213-213
    • /
    • 2011
  • DC arc plasmatron is powerful plasma source to apply etching and texturing processing. Even though DC arc plasmatron has many advantages, it is difficult to apply an industry due to the small applied area. To increase an effective processing area, we suggest a DC-RF hybrid plasma system. The DC-RF hybrid plasma system was designed and made. This system consists of a DC arc plasmatron, RF parts, reaction chamber, power feeder, gas control system and vacuum system. To investigate a DC-RF hybrid plasma, we used a Langmuir probe, OES (Optical emission spectroscopy), infrared (IR) light camera. For RF matching, PSIM software was used to simulate a current of an impedance coil. The results of Langmuir probe measurements, we obtain a homogeneous plasma density and electron temperature those are about $1{\times}1010$ #/cm3 and 1~4 eV. The DC-RF hybrid plasma source is applied for plasma etching experimental, and we obtain an etching rate of 10 ${\mu}m$/min. through a 90 mm of reaction chamber diameter.

  • PDF

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF

Study on Improvement of Diamond Deposition on Al2O3 Ceramic Substrates by a DC Arc Plasmatron

  • Kang, In-Je;Joa, Sang-Beom;Chun, Se-Min;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.457-457
    • /
    • 2012
  • We presented plasma processing using a DC Arc Plasmatron for diamond deposition on Al2O3 ceramic substrates. Plasma surface treatments were conducted to improve deposition condition before processing for diamond deposition. The Al2O3 ceramic substrates deposited, $5{\times}15mm^2$, were investigated by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD). Properties of diamond (111), (220) and (311) peaks were shown in XRD. We identified nanocrystalline diamond films on substrates. The results showed that deposition rate was approximately $2.2{\mu}m/h$ after plasma surface treatments. Comparing the above result with a common processing, deposition rate was improved. Also, the surface condition was improved more than a common processing for diamond deposition on Al2O3 ceramic substrates.

  • PDF

대기압 DC Arc Plasma를 이용한 Etching rate의 최적화 연구

  • Gang, In-Je;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.478-478
    • /
    • 2010
  • 대기압 플라즈마 공정은 진공 플라즈마 공정에 비해 장치의 경제성 및 규모면에서 많은 장점을 갖고 있어 대기압 공정에 대한 연구가 필요하다. 본 연구는 대기압 DC Arc Plasmatron을 이용하여 기체의 유량, 전류, plasmatron과 Si wafer 간의 거리를 변화시켜 이에 대한 Si wafer에 식각률(etching rate)을 확인하고 최적화 하였다. Ar은 2000sccm, $CF_4$는 50, 100sccm, 그리고 $O_2$는 0~1000sccm의 유량에 변화를 주었고 전류는 50A, 70A에서 식각하였다. 분석을 위해 Si wafer를 SEM(scanning electron microscope) 측정을 하였고, 그 결과 전류는 70A에서 기체 유량은 $CF_4$는 100sccm, $O_2$는 500sccm 일 때 식각률이 높게 나타났다. 그리고 전류와 유량을 위와 같은 조건에서 Plasmatron과 Si wafer 간의 거리를 5mm~15mm 변화를 주었을 때 Si wafer에 식각률을 측정해 본 결과 거리가 5mm일 때 식각률이 가장 높음을 확인 할 수 있었다. 아울러 거리를 변화시켰을 때가 유량이나 전압을 변화시킨 것 보다 식각률의 변화가 큰 경향을 보임을 알 수 있었다.

  • PDF

대기압 플라즈마를 이용한 ZnO 박막 형성 연구

  • Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.143-143
    • /
    • 2013
  • DC Arc Plasmatron을 이용하여 대기압에서 ZnO 박막을 형성하였다. Zinc acetyl acetonate, diethylzinc, zinc power들을 precursor로 사용하여 박막을 형성하였다. 100 nm/min에 달하는 박막 형성 속도가 관측되었다. 기판의 온도와 압력, 플라즈마트론의 파워 등에 따라 박막은 amorphous와 poly-crystal 상을 나타내었다. XRD, SEM, XPS 등을 이용하여 박막의 특성을 조사하였고, 박막의 전기전도도를 증가시키기 위하여 수소분위기에서의 annealing 효과를 조사하였다.

  • PDF

Depositon of Transparent Conductive Films by a DC arc Plasmatron

  • Penkov, O.V.;Plaksin, V. Yu.;Joa, S.B.;Kim, J.H.;LEE, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.480-480
    • /
    • 2010
  • In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1,500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photo-electron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Sheet resistance of 4 Ohms cm was achieved after the deposition and 30 min annealing in the hydrogen at $350^{\circ}C$. Elevation of the substrate temperature during the deposition process up to $350^{\circ}C$ leads to decreasing of the film's resistance due to rearrangement of the crystalline structure.

  • PDF

ZnO films grown on GaN/sapphire substrates by pulsed laser deposition

  • Suh, Joo-Young;Song, Hoo-Young;Shin, Myoung-Jun;Park, Young-Jin;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.207-207
    • /
    • 2010
  • Both ZnO and GaN have excellent physical properties in optoelectronic devices such as blue light emitting diode (LED), blue laser diode (LD), and ultra-violet (UV) detector. The ZnO/GaN heterostructure, which has a potential to achieve the cost efficient LED technology, has been fabricated by using radio frequency (RF) sputtering, pyrolysis, metal organic chemical vapor deposition (MOCVD), direct current (DC) arc plasmatron, and pulsed laser deposition (PLD) methods. Among them, the PLD system has a benefit to control the composition ratio of the grown film from the mixture target. A 500-nm-thick ZnO film was grown by PLD technique on c-plane GaN/sapphire substrates. The post annealing process was executed at some varied temperature between from $300^{\circ}C$ to $900^{\circ}C$. The morphology and crystal structural properties obtained by using atomic force microscope (AFM) and x-ray diffraction (XRD) showed that the crystal quality of ZnO thin films can be improved as increasing the annealing temperature. We will discuss the post-treatment effect on film quality (uniformity and reliability) of ZnO/GaN heterostructures.

  • PDF

Effects of Plasma Surface Treatments Using Dielectric Barrier Discharge to Improve Diamond Films

  • Kang, In-Je;Ko, Min-Guk;Rai, Suresh;Yang, Jong-Keun;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.552-552
    • /
    • 2013
  • In our study we consider Al2O3 ceramic substrates for Plasma Surface Treatments in order to improve deposited diamond surface and increase diamond deposition rate by applying DBD (Dielectric Barrier Dischrge) system. Because Plasma Surface Treatments was used as a modification method of material surface properties like surface free energy, wettability, and adhesion. By applying Plasma Surface Treatments diamond films are deposited on the Al2O3 ceramic substrates. DC Arc Plasmatron with mathane and hydrogen gases is used. Deposited diamond films are investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) is studied. As a result, nanocrystalline diamond films were identified by using SEM and diamond properties in XRD peaks at (111, $43.8{\Box}$, (220, $75.3{\Box}$ and (311, $90.4{\Box}$ were shown. Absorption peaks in FTIR spectrum, caused by CHx sp3 bond stretching of CVD diamond films, were identified as well. Finally, we improved such parameters as depostion rate ($2.3{\mu}m$/h), diamond surface uniformity, and impurities level by applying Plasma Surface Treatments. These experimental results show the importance of Plasma Surface Treatments for diamond deposition by a plasma source.

  • PDF