• Title/Summary/Keyword: DC Arc Furnace

Search Result 15, Processing Time 0.031 seconds

Thyristor Rectifier for DC Arc Furnace with Enhanced Arc Stability

  • Jung, Kyungsub;Suh, Yongsug;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.498-499
    • /
    • 2011
  • In this paper, the fundamental features of the arc stability DC arc furnace have been investigated, from the converter point of view. To compare of measurement arc data from DC arc furnace and the advanced arc simulations of magneto-hydrodynamics (MHD) and the well known Cassie-Mayr arc model have been extensively used. The MHD based arc simulation has been validated in the subcomponent level, for the free burning arc set up in the laboratory. The arc simulation predicted the arc voltage for different currents with the accuracy which satisfies engineering requirements. It has been shown that the arc current steepness at current zero determines the arc stability, and the associated peak arc resistance can be used as its quantitative measure. Based on the presented insight into the DC arc stability, a converter topology solution which realizes an optimal arc stability has been proposed. The main results presented in this paper provide a design guideline for the future DC arc furnace converter topology developments.

  • PDF

Control Strategy of Smoothing Arc for DC Arc Furnace

  • Jung, Kyungsub;Suh, Yongsug;Lee, Yongjoong;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.354-355
    • /
    • 2013
  • Fundamental features of the arc stability in DC arc furnace of 720V/100kA/72MW have been investigated. Cassie-Mayr arc model has been employed and applied for the target dc arc furnace. In order to characterize the parameters of Cassie-Mayr arc model and the behavior of unstable arc dynamics, the advanced arc simulations of magneto-hydrodynamics (MHD) has been performed. The MHD based arc simulation has been validated in the subcomponent level, for the free burning arc set up in the laboratory. From the results of MHD simulation, dc arc dynamic resistance is proposed to be an effective arc stability function reflecting the instability of dynamic arc behavior. The experimental result confirms the usefulness of proposed dynamic arc resistance as arc stability function. The proposed arc stability function can be regarded as an effective criterion for the overall power conversion system to maintain highly stable arcing operation leading to better productivity and reliability.

  • PDF

Control Algorithm of Thyristor Rectifier to Improve Arc Stability in DC Arc Furnace

  • Jung, Kyungsub;Suh, Yongsug;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.371-372
    • /
    • 2012
  • In this paper fundamental features of the arc stability in DC arc furnace of 720V/100kA/72MW have been investigated. Cassie-Mayr arc model has been employed for the target dc arc furnace. In order to characterize the parameters of Cassie-Mayr arc model and the behavior of unstable arc dynamics, the advanced arc simulations of magneto-hydrodynamics (MHD) has been performed. Based on the results of MHD simulation, dc arc dynamic resistance is proposed to be an effective arc stability function reflecting the instability of dynamic arc behavior. The experimental result confirms the usefulness of proposed dynamic arc resistance as arc stability function. The proposed arc stability function can be regarded as an effective criterion for the overall power conversion system to maintain highly stable arcing operation leading to better productivity and reliability.

  • PDF

NUMERICAL ANALYSIS OF AN ARC PLASMA IN A DC ELECTRIC FURNACE

  • Lee Yeon Won;Lee Jong Hoon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.30-33
    • /
    • 2004
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid How in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism into account, i.e. radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, i.e., conservation equations of mass, momentum, and energy together with the equations describing a standard $k-\varepsilon$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. from these results, it can be concluded that higher arc current and longer arc length give high heat transfer.

  • PDF

Numerical Analysis of an Arc Plasma in a DC Electric Furnace

  • Lee, Yeon-Won;Lee, Jong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1251-1257
    • /
    • 2004
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid flow in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism onto account, that is radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, that are conservation equations of mass, momentum and energy together with the equations describing a standard k-${\varepsilon}$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. From these results, it can be concluded that higher arc current and longer arc length give high heat transfer

Numerical Analysis on Plasma Characteristics of a DC Electric Arc Furnace (직류 전기 아크로에서의 플라즈마 특성에 관한 수치해석)

  • Lee J. H.;Han B. Y.;Kwak S. M.;Lee Y. W.;Kim C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.212-218
    • /
    • 2003
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid flow in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism into account, i.e. radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, i.e., conservation equations of mass, momentum, and energy together with the equations describing a $\kappa-\epsilon$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. From these results, it can be concluded that higher arc current and longer arc length give high heat transfer.

  • PDF

AC/DC Resonant Converter to Control for DC Arc furnace (직류 전기아크로를 제어하기 위한 전원장치로서의 AC/DC 공진형 컨버터)

  • ;;Jaan Jarvik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • When solving the problems of electric power quality the converters with high Power factor are useful for the DC arc furnace power supply. In this paper, resonant converters of 50(60) Hz AC to DC arc described, where in each period of network voltage the capacitor and inductor of an oscillatory circuit are switched from series into parallel and vice versa parametrically. The duration of series and parallel connection and also the transformation ratio are dependent on load. Parallel oscillatory circuit restricts the short circuit current. These converters have high power factor from no-load to short-circuit and fit very well to supply are furnaces.

Power Quality Impacts of an Electric Arc Furnace and Its Compensation

  • Esfandiari Ahmad;Parniani Mostafa;Mokhtari Hossein
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.153-160
    • /
    • 2006
  • This paper presents a new compensating system, which consists of a shunt active filter and passive components for mitigating voltage and current disturbances arising from an Electric Arc Furnace (EAF). A novel control strategy is presented for the shunt active filter. An extended method based on instantaneous power theory in a rotating reference frame is developed for extraction of compensating signals. Since voltages at the point of common coupling contain low frequency interharmonics, conventional methods cannot be used for dc voltage regulation. Therefore, a new method is introduced for this purpose. The passive components limit the fast variations of load currents and mitigate voltage notching at the Point of Common Coupling (PCC). A three-phase electric arc furnace model is used to show power quality improvement through reactive power and harmonic compensation by a shunt active filter using the proposed control method. The system performance is investigated by simulation, which shows improvement in power quality indices such as flicker severity index.

AC/DC Resonant Converter to Control for DC Arc furnace (직류 전기아크로를 제어하기 위한 전원장치로서의 AC/DC 공진형 컨버터)

  • Ryu Byoung-woo;Choi Jae-ho;Jarvik Jaan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.769-772
    • /
    • 2002
  • 본 논문에서는 직류 전기아크로의 전원장치로서 AC/DC 공진형 컨버터가 묘사된다. 또한 무효전력을 보상하기 위한 커패시터와 인덕터를 각각 직렬과 병렬로 연결되어 있다. 그러므로 무부하부터 단락회로까지의 범위에서 역률이 매우 높다. 이 컨버터는 직류 아크로의 전원장치로서 매우 적당하다.

  • PDF

Current Control in Cascaded H-bridge STATCOM for Electric Arc Furnaces (전기로용 다단 H-브릿지 STATCOM의 전류제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong;Kim, Yun-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • A static synchronous compensator (STATCOM) applied to rapidly changing, highly unbalanced loads such as electric arc furnaces (EAFs), requires both positive-sequence and negative-sequence current control, which indicates fast response characteristics and can be controlled independently. Furthermore, a delta-connected STATCOM with cascaded H-bridge configuration accompanying multiple separate DC-sides, should have high performance zero-sequence current control to suppress a phase-to-phase imbalance in DC-side voltages when compensating for unbalanced load. In this paper, actual EAF data is analyzed to reflect on the design of current controllers and a pioneering zero-sequence current controller with a superb transient performance is devised, which generates an imaginary -axis component from the presumed response of forwarded reference. Via simulation and experiments, the performance of the positive, negative, and zero-sequence current control of a cascaded H-bridge STATCOM for EAF is verified.