• Title/Summary/Keyword: DC ${\mu}-Grid$(DC Micro Grid)

Search Result 3, Processing Time 0.018 seconds

A Study on Stable Operation of Li-ion Battery Charging/Discharging System (Li-ion 배터리 충/방전 시스템의 안정적 운영에 관한 연구)

  • Yeo, Sung-Dae;Han, Cheol-Kyu;Cho, Tae-Il;Lee, Kyung-Ryang;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.395-402
    • /
    • 2016
  • When the operation of battery is converted at charging and discharging system based on a DC micro grid, the voltage is fluctuated. And excessive voltage fluctuation could cause damage or failure of charging and discharging equipment. Therefore, in this paper, we studied the operating schedule of the charging and discharging system based on the DC micro grid and a design point of the capacitor which was able to reduce the voltage fluctuation. A result of computer simulation showed that when a fluctuation-reducing capacitor which had an initial value of 600V/35mF was applied at the charging and discharging system based on a DC micro grid which was operated with three charging battery sets and five discharging battery sets, voltage fluctuation by charging and discharging operation was reduced by about 63.3%. Furthermore, voltage fluctuation which occurred when initial network voltage was stabilized was reduced by about 73%.

A Study on Energy Efficiency of Battery Charge/Discharge System based on DC μ-Grid (DC μ-Grid 기반 배터리 충/방전 시스템의 에너지 효율에 관한 연구)

  • Yeo, Sung-Dae;Kim, Jong-Un;Lee, Kyung-Ryang;Han, Cheol-Kyu;Ryu, Tae-Hyoung;Kim, Kyeong-Hwa;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.12
    • /
    • pp.1337-1344
    • /
    • 2015
  • Formation process through charge/discharge operation is needed in manufacturing Li-ion battery. In the process battery is discharged by a load resistor of discharger. Here, energy losses happen. Therefore, in this paper, the efficient energy operation of battery is studied in the charge/discharge system based on DC ${\mu}-Grid$. A result of computer simulation shows that if in the charge/discharge system based on DC ${\mu}-Grid$, the number of discharge batteries in comparison with three charge battery sets exceeds 133%, voltage fluctuation that occurs while the grid voltage stabilizes, which makes the system fatal. Therefore, it was demonstrated that a remarkable energy saving effect could be achieved when the number of discharge battery set is maintained to be 133% in comparison with three charge battery sets.

A Novel Multi-Function PV Micro-Inverter with an Optimized Harmonic Compensation Strategy

  • Zhu, Guofeng;Mu, Longhua;Yan, Junhua
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2284-2293
    • /
    • 2016
  • With the rapid development of clean energy, photovoltaic (PV) generation has been utilized in the harmonic compensation of power systems. This paper presents a novel multi-function PV micro-inverter with three stages (pseudo-two-stage). It can inject active power and compensate harmonic currents in the power grid at the same time. In order to keep the micro-inverter working under the maximum allowable output power, an optimized capacity limitation strategy is presented. Moreover, the harmonic compensation can be adjusted according to the customized requirements of power quality. Additionally, a phase shedding strategy in the DC/DC stage is introduced to improve the efficiency of parallel Boost converters in a wide range. Compared with existing capacity limitation methods, the proposed strategy shows better performance and energy efficiency. Simulations and experiments verify the feasibility of the micro-inverter and the effectiveness of the strategy.