• Title/Summary/Keyword: DBPs

Search Result 95, Processing Time 0.027 seconds

Models for Formation of Chloroform by Reaction of Linear Alkylbenzenesulfonate with Free Chlorine (LAS의 염소와 반응에 의한 클로로포름 생성 모델)

  • 김혜태;남상호
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.77-85
    • /
    • 1998
  • It is very frequent that LAS meets the chlorine bleaches not only in the processes but also in the path from the sewages to the rivers. Therefore, it is not difficult to imagine that the harmful substances like DBPs are produced when LAs reacts with free chlorine. THMs are the major components of DBPs which are formed by reactions of organic substances with the chlorine oxidants. Among them, chloroform is the most noteworthy material. Since the major behavior observed was the formation of chloroform during reaction of LAS with free chlorine, the models were developed to grasp the tendency of chloroform formation depending on condition. According to these models, the effect of pH in the formation of chloroform is most grave.

  • PDF

Formation Characteristics of DBPs by Chlorination in Water Treatment Plant (정수장에서 소독부산물의 생성특성)

  • Rhee, Dong-Seok;Min, Byoung-Seob;Park, Sun-Ku;Kim, Joung-Hwa;Rhyu, Jae-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • This study was carried out to investigate the formation of DBPs(Disinfection By-products) such as trihalomethane(THMs) and haloacetic acid(HAAs) by chlorination in raw water and finished water of Water Treatment Plant(WTP). The formation of THMs was increased with the increase of pH and reaction time. HAAs was found as a high formation at a pH 7 and low formation at pH 9. THMFP(Trihalomethane Formation Potential) was the highest formation potential in raw water of Pu-1 and the lowest in raw water of Pa-1. In case of HAAFP(Haloacetic acid formation potential), So-1 showed the highest value, while Pa-1 showed the lowest value. It was investigated the relationship between HAAs and organic matters which were described as DOC(dissolved organic carbon) and $UV_{254}$. In both DOC and $UV_{254}$ versus HAAFP, Pu-1 showed the good correlation coefficients($r^2$) with 0.95 and 0.84, respectively. For three WTP investigated, DBPs(THMs + HAAs) was shown over the range of $42.00{\sim}49.36{\mu}g/L$. This result might be due to the different characteristic of organic matters in raw water and the difference of chlorine dosage for a water treatment.

Evaluation of Natural Organic Matter Treatability and Disinfection By-Products Formation Potential using Model Compounds (정수처리 공정에서 모델 물질들을 이용한 천연유기물질 처리능 및 소독부산물 생성능 평가)

  • Son, Hee-Jong;Jung, Jong-Moon;Choi, Jin-Taek;Son, Hyung-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1153-1160
    • /
    • 2013
  • While a range of natural organic matter (NOM) types can generate high levels of disinfection by-products (DBPs) after chlorination, there is little understanding of which specific compounds act as precursors. Use of eight model compounds allows linking of explicit properties to treatability and DBP formation potential (DBPFP). The removal of model compounds by various treatment processes and their haloacetic acid formation potential (HAAFP) before and after treatment were recorded. The model compounds comprised a range of hydrophobic (HPO) and hydrophilic (HPI) neutral and anionic compounds. On the treatment processes, an ozone oxidation process was moderate for control of model compounds, while the HPO-neutral compound was most treatable with activated carbon process. Biodegradation was successful in removing amino acids, while coagulation and ion exchange process had little effect on neutral molecules. Although compared with the HPO compounds the HPI compounds had low HAAFP the ozone oxidation and biodegradation were capable of increasing their HAAFP. In situations where neutral or HPI molecules have high DBPFP additional treatments may be required to remove recalcitrant NOM and control DBPs.

Comparative risk analysis for priority ranking of environmental problems in Seoul

  • Kim, Ye-Shin;Lee, Yong-Jin;Park, Hoa-Sung;Lim, Young-Wook;Shin, Dong-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.169-169
    • /
    • 2003
  • In Korea, there is no CRA studies and has not well known CRA and not well established their methodologies. Therefore, objectives of this study is to establish the framework of CRA consisting of health risk, economic risk and perceived risk and the detail methodologies of three main component of estimating and comparing those risks for on the three environmental problems of air pollution, indoor air pollution and drinking water contamination which being subjective to the eight sub-problems of hazardous ai. pollutants (HAPs), regulated pollutants (representative as PM10) and Dioxins (PCDDS/ PCDFs) in air pollution, and indoor ai. pollutants (IAPs) and Radon in indoor air pollution, and drinking water pollutants (DWPs), disinfection-by- products(DBPs) and radionuclides in drinking water contamination in Seoul, Korea. And then, their problems set priorities by individual and integrated risk. As a results, ranking of health risk were the following order of indoor air pollution, air pollution and then drinking water contamination, in three environmental problems and of radon, PM10, IAPs, HAPs, DWPs, Dioxins, DBPs, and then radionuclides in eight sub-problems. And that of economic risk were the same order. In the contrary, ranking of perceived risk were the following order of air pollution, drinking water contamination, and then indoor air pollution, and of HAPs, Dioxins, radionuclides, PM10, DWPs, IAPs, Radon and then DBPs.

  • PDF

Speciation of THMs, HAAs (THMs, HAAs의 종분포)

  • Kim, Jin-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1135-1140
    • /
    • 2006
  • Concentration and speciation of trihalomethanes(THMs) and haloacetic acids(HAAs) that can be created during chlorine disinfection as disinfection by-products(DBPs) in Korean water treatment plants(WTPs) were investigated. 4 WTPs that adopted conventional water treatment processes were chosen for investigation and each represented a typical WTP on the Han, Keum, Sumjin and Nakdong Rivers. The average concentration of THMs was 26.9 ppb, and the maximum and minimum concentrations were 47.6 ppb and 11.0 ppb respectively, while the average concentration of HAAs was 25.4 ppb, and the maximum and minimum concentrations were 57.1 ppb and 9.7 ppb respectively. DBPs concentration was lower in the winter than the summer. The major species of THMs was chloroform and its average percentage was 77%, and the second highest was bromodichloromethane(20%), while the concentration of bromoform was below detection limits. The sum of dichloroacetic acid(DCAA) and trichloroacetic acid(TCAA) was 97% of $HAA_5 $ on average base. But its percentage was 90% in the Han River WTP, especially it was the lowest during the winter. On the other hand, the concentration of DCAA was higher than TCAA except during the summer.

Removal of haloacetonitrile by adsorption on thiol-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica

  • Krueyai, Yaowalak;Punyapalakul, Patiparn;Wongrueng, Aunnop
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.342-346
    • /
    • 2015
  • Haloacetonitriles (HANs) are nitrogenous disinfection by-products (DBPs) that have been reported to have a higher toxicity than the other groups of DBPs. The adsorption process is mostly used to remove HANs in aqueous solutions. Functionalized composite materials tend to be effective adsorbents due to their hydrophobicity and specific adsorptive mechanism. In this study, the removal of dichloroacetonitrile (DCAN) from tap water by adsorption on thiol-functionalized mesoporous composites made from natural rubber (NR) and hexagonal mesoporous silica (HMS-SH) was investigated. Fourier-transform infrared spectroscopy (FTIR) results revealed that the thiol group of NR/HMS was covered with NR molecules. X-ray diffraction (XRD) analysis indicated an expansion of the hexagonal unit cell. Adsorption kinetic and isotherm models were used to determine the adsorption mechanisms and the experiments revealed that NR/HMS-SH had a higher DCAN adsorption capacity than powered activated carbon (PAC). NR/HMS-SH adsorption reached equilibrium after 12 hours and its adsorption kinetics fit well with a pseudo-second-order model. A linear model was found to fit well with the DCAN adsorption isotherm at a low concentration level.

Characteristics of Disinfection By-Products Formation in Chlorination of Principal Raw Waters for Drinking Water of Jeju Island, Korea

  • Oh, Sun-Mi;Park, Tae-Hyun;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1031-1041
    • /
    • 2012
  • This study was carried out to investigate the characteristics of disinfection by-products (DBPs-trihalomethanes (THMs), haloacetic acids (HAAs) and haloacetonitriles (HANs) formation in chlorination of principal raw waters used for drinking water on Jeju Island, Korea. The domestic water supply of other area and humic acid solution (HA) were used as a reference point. The effects of chlorine contact time, solution temperature and pH on DBPs formation potential (DBPFP) were investigated for raw waters. In addition, the effect of $Br^-$ was studied for HA. The DBPFP (THMFP, HAAFP and HANFP) were increased with increasing chlorine contact time. Comparing the individual DBPFPs for raw waters, they decreased in the order of HAAFP > THMFP ${\geq}$ HANFP. As the solution temperature was increased, the THMFP, HAAFP and HANFP increased. With increasing the solution pH, the THMFP was increased, but HAAFP and HANFP were decreased. With the addition of 0.3 mg/L $Br^-$ for HA, the DBPFP was increased and the major chemical species changed: from trichloromethane to dibromochloromethane and tribromomethane for THMs; from dichloroacetic acid and trichloroacetic acid to tribromoacetic acid for HAAs; and from dichloroacetonitrile to dibromoacetonitrile for HANs.

Removal of NOM in a Coagulation Process Enhanced by Modified Clay (개질 Clay를 첨가한 응집공정에서의 자연유기물 제거)

  • Park, Ji-Hye;Lee, Sang-Yoon;Park, Hung-Suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2007
  • A feasibility test was conducted to evaluate the addition of turbidity substance in a coagulation process to remove natural organic matters (NOM), the precursor of disinfection by-products (DBPs). The experimental water sources were synthetic water containing 5 mg/L of humic acid and 50 mg/L of NaHCO3 and drinking water resource of Ulsan city (S Dam water, D Dam water and Nak-Dong raw water). The examined turbidity substances were kaolin, acid clay, and modified clay (0.38 meq $NH_4{^+}-N/g$ clay). In Jar tests at different concentrations of the turbidity substances (5, 10, 15, 20, 30 mg/L) using the synthetic water, the turbidity substances improved the removal of turbidity, UV-254 absorbance and dissolved organic carbon (DOC) by 23.8-38.1%, 17.0-24.5% and 2.5-44.5%, respectively. The modified clay showed higher removal efficiencies than other substances. In Jar tests using the drinking water, 10 and 20 mg/L of modified clay enhanced the removal efficiencies of turbidity, UV-254 absorbance, DOC, trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) by 3.0~4.3%, 19.1~29.0%, 12~34.9%, 4.9~36.7%, and 1.6~30.2%, respectively.

Operating Conditions for Minimization of DBPs (Disinfection by-Products) in Drinking Water Supply System (소독부산물 최소화를 위한 운영조건 연구)

  • Shin, Hyung-Soon;Choi, Phil-Kweon;Kim, Jong-Su;Choi, Ill-Woo;Kim, Sang-Hoon;Kim, Tae-Hyun;Lee, Kyung-Hee;Lee, Soo-Moon;Jang, Eun-Ah;Jung, Yeon-Hoon;Kim, Jung-Yeol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.330-337
    • /
    • 2005
  • This study was carried out to propose the managemental improvement of the purification plants and the distribution facilities which can minimize the formation of disinfection by-products in drinking water distribution system. The disinfection by-products were highly created in the water treatment plant that the organic matters were high and the chlorine dosage was excessive. The concentration of DSPs was shown the highest value in August and the lowest value in December, because of temperature and pre-chlorine dosage effect. From the result of tracer test, the travel time from the treatment plant to the end of pipeline was around 3-4 days in summer, 5-6 days in winter, respectively, and the DSPs concentration of the reservoir(end of pipe) was 2-3 times higher than that of the beginning point. The improvement of the chlorination process and structural reformation of distribution facility was demanded to minimize the DSPs increase from purification plant to the end of pipe.