• Title/Summary/Keyword: DAWAST model

Search Result 35, Processing Time 0.019 seconds

Effect of Yongdam Dam Operation to Level of Reference Flows Downstream (용담댐 운영이 하류 기준유량 설정에 미치는 영향)

  • Noh, Jae-Kyoung;Yoo, Jae-Min;Oh, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1772-1776
    • /
    • 2006
  • The Ministry of Environment is determining reference flows and goal water qualities in many stations over all around riverbasin to control TMDL. Reference flow is now defined to 10 years averaged 275th minimum flow$(Q_{275})$. Dam operation takes direct effect on flows downstream. The Yongdam mutipurposed dam was constructed in 2002 and TMDL managing stations between the Daecheong dam and the Yongdam dam are the Geumbon B, C, D, E, and F in main stream of the Geum river. Geumbon F is the Daecheong dam site. Observed flows are ideal to be used to set reference flows, but simulated flows are more practical to be used to set reference flows from the cause of the Yongdam dam's operation. A system for simulating daily storages of the Yongdam dam was constructed and the DAWAST model was selected to simulate daily streamflows. Analysis period was selected for 10 years from 1996 to 2005. Scenario was set as follows; Firstly, observed outflows from the Yongdam dam are used from 2002 to 2005 and the Yongdam dam does not exist from 1995 to 2001. Secondly, the Yongdam dam existed also from 1995 to 2001 and simulated outflows from the Yongdam dam are used from 1996 to 2005 with provision of constant outflow of $7.0m^3/s$ and water supply to the Jeonju region outsided watershed of $900,000m^3/day$. In case of scenario 1 reference flows at the Geumbon B, C, D, E, F are 4.52, 6.69, 7.96, 11.17, and $13.21m^3/s$, respectively. And in case of scenario 2 reference flows at the Geumbon B, C, D, E, F are 6.27, 8.48, 9.58, 12.73, and $15.12m^3/s$, respectively.

  • PDF

Estimation of Inflows to Jangchan Reservoir from Outside Watershed by Minimizing Reservoir Water Storage Errors (저수량 오차에 의한 장찬저수지의 유역외 유입량 추정)

  • Noh, Jae-Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.61-68
    • /
    • 2010
  • Jangchan reservoir is located in Okcheon county, Chungbuk province, of which watershed area is $29.4\;km^2$ from outside, and $5.1\;km^2$ from inside watershed, effective storage capacity is $392{\times}10^4\;m^3$, paddy area to be irrigated is 474 ha. To determine inflows from Keumcheon weir located in outside watershed on an optimum level, a repeated procedure which is composed of simulation of inflows to Keumcheon weir, setting of range of water taking at Keumcheon weir, simulation of inflows to Jangchan reservoir, estimation of paddy water from Jangchan reservoir, and simulation of water storages in Jangchan reservoir was selected. Parameters of DAWAST model for simulating inflows to Jangchan reservoir were determined to UMAX of 315 mm, LMAX of 21 mm, FC of 130 mm, CP of 0.018, and CE of 0.007 with absolute sum of errors in reservoir water storages minimized using unconstrained Simplex method because of no inflows data. Inflows to Keumcheon weir were simulated to $2,132{\times}10^4\;m^3$ on an annual average. Optimal range of water taking at Keumcheon weir to transfer to Jangchan reservoir were $0.81{\sim}50\;mm/km^2/d$, which were summed up to $1,397{\times}10^4\;m^3$ in 66% of total on an annual average. Inflows to Jangchan reservoir were simulated to $1,739{\times}10^4\;m^3$ on an annual average of which were 80 % from Keumcheon weir of outside watershed. Requirements to paddy water from Jangchan reservoir were estimated to $543{\times}10^4\;m^3$ on an annual average.

Evaluation of Supplying Instream Flow by Operation Rule Curve for Heightening Irrigation Reservoir (이수관리곡선에 의한 증고저수지의 하천유지유량 공급 가능성 평가)

  • Lee, Jae-Nam;Noh, Jae-Kyoung
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.481-490
    • /
    • 2010
  • Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water levels will be heightened from EL. 100.1 m to EL. 102.1 m, and total storages from 21.75 $Mm^3$ to 26.67 $Mm^3$. The simulation for reservoir inflow was conducted by DAWAST model. The annual average irrigation water was estimated to 33.19 $Mm^3$ supplied to 2,975 ha and the instream flows could be allocated with 0.14 mm/d from October to April with annual average of 2.52 $Mm^3$. The operation rule curve was drawn using inflow, irrigation, and instream flow requirements data. The reservoir water storage was simulated on a daily basis in case of both normal and withdrawal limit operation. In case of normal operation, the annual average irrigation water supply increased from 31.95 $Mm^3$ to 33.32 $Mm^3$, the instream water supply from 2.40 $Mm^3$ to 2.44 $Mm^3$, the water storages from 15.74 $Mm^3$ to 19.88 $Mm^3$, and the water supply reliability from 77.3 % to 81.6 %. In case of operation with withdrawal limit, the amount of instream water supply was 2.52 $Mm^3$ from reservoir regardless of the condition while the water storage increased from 16.77 $Mm^3$ to 20.65 $Mm^3$. The irrigation water supply capacity was appropriate for the case of normal operation with 2 m heightened condition. The present instream water supply capacity was 35,000 $m^3$/d (6.86 $Mm^3$/y) while 42,000 $m^3$/d (8.36 $Mm^3$/y) in 2 m heightened condition in case of withdrawal limit operation.

Affecting Water Supply Capacity Followed by Allocating Flood Control Volume in Heightening Reservoir (홍수조절용량 설정에 따른 증고저수지의 용수공급능력 변화)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.57-70
    • /
    • 2010
  • This study was performed to analyze the affect of water supply capacity followed by allocating flood control volume in heightening reservoir, of which Baekgog reservoir was selected as a case study in here. Baekgog reservoir is located in Jincheon county, Chungbuk province, of which full water level will be heightened from EL. 100. 1m to EL. 102.1m, and total storage from 21.75M $m^3$ to 26.67M $m^3$. Flood inflow with 200year frequency was estimated to 997 $m^3$/s in peak flow and 22.54M $m^3$ in total volume. Reservoir flood routing was conducted to determine flood limited water levels, which was determined to have scenarios such as EL 97-98-99m in periods of 6.21.-7.20., 7.21.-8.20., and 8.21.-9.20., respectively, EL 97-97-97m, EL 98-98-98m in present reservoir, and EL 99-100-101m, EL 99-99-99m, and EL 100-100-100m in heightened reservoir. Reservoir inflow was simulated by DAWAST model. Annual paddy irrigation requirement was estimated to 33.19M $m^3$ to 2,975ha. Instream flow was allocated to 0.14mm/d from October to April. Operation rule curve was drawn using inflow, irrigation and instream flow requirements data. In case of withdrawal limit reservoir operation using operation rule curve, reduction rates of annual irrigation supply before and after flood control by reservoir were 2.0~4.3% in present size and 1.5~3.6% in heightened size. Reliability on water supply was decreased from 77.3% to 63.6~68.2% in present size and from 81.6% to 72.7~79.5% in heightened size. And reduction rates of water storage at the end of year before and after flood control by reservoir were 7.3~16.5% in present size and 7.7~16.9% in heightened size. But water supplies were done without any water deficiency through withdrawal limit reservoir operation in spite of low flood regulating water level.

  • PDF

Securing Inflows to Reservoir with Low Ratio of Watershed to Paddy Field Areas by Operating Outside Diversion Weir (유역외 보의 연계운영에 의한 유역배율이 작은 저수지의 유입량 확보 가능성)

  • Noh, Jae-Kyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.17-28
    • /
    • 2011
  • This study was performed to ascertain the possibility of securing inflows to reservoir with low ratio of watershed to paddy field areas by outside diversion weir. The case of Maengdong reservoir and Samryong diversion weir was selected. Most of inflows to Maengdong reservoir with watershed area of $7.06\;km^2$ and total storage capacity of $1,269{\times}10^4\;m^3$ are filled with intake water from outside Samryong diversion weir. Only using water storage data in Maengdong reservoir from 1991 to 2009, the range of water intake in Samryong diversion weir to Maengdong reservoir was optimized to 0.135~30 mm/d, from which water intake to Maengdong reservoir was $1,672.9{\times}10^4\;m^3$ (70.1 %) and downstream outflow to Weonnam reservoir was $714.4{\times}10^4\;m^3$ (29.9 %). The parameters of DAWAST model for reservoir inflow were determined to UMAX of 313.8 mm, LMAX 20.3 mm, FC 136.8 mm, CP 0.018, and CE 0.007. Inflows to Maengdong reservoir were $427.1{\times}10^4\;m^3$ (20.3 %) from inside watershed, and $1,672.9{\times}10^4\;m^3$ (79.7 %) from outside. Paddy irrigation water requirements were estimated to $1,549{\times}10^4\;m^3$ on annual average. Operation rule curve was drawn by using daily inflow and irrigation requirement data. By securing the amount of inflow to Maengdong reservoir to about 80 % from outside Samryong diversion weir, water supply capacity for irrigation of $1,549{\times}10^4\;m^3/yr$ was analyzed to be enough. Additional water supplies for instream flow were analyzed to $1,412\;m^3/d$ in normal reservoir operation, $36,000\;m^3/d$ in withdrawal limit operation by operation rule curve from October to March of non irrigation period.