• Title/Summary/Keyword: DAS(Dendrite Arm Spacing)

Search Result 10, Processing Time 0.027 seconds

The Effects of the Distribution Aspect of Precipitate on the Corrosion Behavior of As-Cast Magnesium Alloys

  • 이충도
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.295-295
    • /
    • 1999
  • In the present study, the corrosion behavior of AZ91D as-cast alloy was investigated form the viewpoint of the distribution aspect of precipitate ($Mg_{17}Al_{12}$) and the variation of Al concentration in the Mg-rich matrix. The dendrite arm spacing (DAS) of an as-cast specimen was measured as a function of degree which describes the distribution aspect of the precipitate, and the salt spray test was conducted for various grain-sired specimens fur 20 days. The dendrite arm spacing increased as the grain size increased to about 150㎛, but a constant value is indicated when the grain size exceeds that range. Although the relationship between the corrosion rate and grain size is of a nonlinear type, the linear trend between the corrosion rate and the dendrite arm spacing is maintained for the overall range of dendrite arm spacing. Since the precipitate in the as-cast alloy is discontinuously distributed, this linear relationship means that the variation of Al-solute concentration in the Mg-rich matrix has a more potent effect than the protective action of the precipitate on the corrosion behavior of an as-cast alloy.

A Study on the Mechanical Properties of Al-8.6% Si-3.6% Cu Alloy Cast in Plaster Mold (석고주조(石膏鑄造)한 Al-8.6% Si-3.6% Cu 합금(合金)의 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Yeo, In-Dong;Kim, Dong-Ok;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.4 no.4
    • /
    • pp.5-13
    • /
    • 1984
  • This paper is presented for showing the effect of cooling rate on dendrite arm spacing, correlated with the chilling power of molding materials (conventional plaster, foamed plaster, silica sand) and section thickness, and also showing relationship between dendrite arm spacing and mechanical properties for an aluminum - 8.6 percent silicon - 3.6 percent copper alloy. Local solidification time $(t_f)$ and secondary dendrite arm spacing (d) could be varied widely in accordance with the molding materials and casting thickness, and the following relationship is obtained: $d=9.4t_f\;^{0.31}$ A good correlation between dendrite arm spacing and mechanical properties such as ultimate tensile strength, yield strength, hardness was found, that is, mechanical properties decreased in a linear manner with increase in log of secondary dendrite arm spacing. Ultimate tensile strength in conventional plaster mold casting decreased by 15 percent comparing with the sand casting, where as in foamed plaster mold casting, it decreased by 30 percent comparing with the sand casting. From those results, it has been verified that DAS might be the most representative parameter for predicting mechanical properties varing with the different cooling condition.

  • PDF

Study of the Characteristics and Crystal Growth of a shorted Wire by Overcurrent (과전류에 의해 단락된 전선의 결정성장 특성에 관한 연구)

  • Park, Jin-Young;Bang, Sun-Bae;Ko, Young-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • If an overcurrent exceeding the rated value is applied to an electric wire, the temperature of the electric wire increases, and the electric wire covering deteriorates to cause a short circuit. The upper limit temperature of the wire varies according to the magnitude of the overcurrent. When a short circuit occurs at each upper temperature limit, a cooling speed difference occurs during the solidification process due to the temperature difference between the short circuit temperature and the wire surface temperature. At this time, the pattern characteristics of the dendritic structure formed on the molten cross section are different. In this study, the upper temperature limit, which varied according to the overcurrent magnitude, was measured. At the time a short circuit occurred, the second branch spacing (dendrite Arm Spacing : DAS) of the dendrite was analyzed and the numerical value was quantified. The experimental results showed that the upper temperature limit increases with the magnitude of the overcurrent, and that the second branch spacing increases with increasing wire temperature.

Microstructural Analysis of Local Tensile Deformation Characteristics in A356 Hollow Sand Cast Chassis Part (A356 중공 주조 샤시 부품에서의 국부적인 인장 변형 특성에 미치는 미세 조직 분석)

  • Kim, Jae-Joong;Ko, Young-Jin;Lim, Jong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Aluminum rear lower arm is designed for luxury sedan and manufactured by hollow sand casting in the present study. Here we present the relationship between local microstructure and coupon tensile test in the rear lower arm. The characteristics of the local tensile deformation are supposed to be dependent upon Si distribution and DAS (dendrite arm spacing). Si distribution affects the yield strength and DAS affects the elongation of local area in the part, respectively.

Effect of Additives on Morpholopy of Electrodeposited Dendritic Cu Powder (전해도금욕에서 첨가제의 종류에 따른 수지상 구리 분말의 형상 비교분석)

  • Park, Da-Jeong;Park, Chae-Min;Gang, Nam-Hyeon;Lee, Gyu-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.167.2-167.2
    • /
    • 2017
  • 수지상 구리분말은 하나의 상(statue)이 복수의 접점(contact point)를 제공하며 표면적이 넓은 구조적인 특징으로 인해 발열기판 전도성 페이스트 등 다양한 전기 전가 분야에 활용되어왔다. 때문에 본 연구에서는 전해도금방법으로 수지상 구리분말이 형성될 때 첨가제가 수지상의 형상에 어떠한 영향을 미치는지 분석하였다. 첨가제는 PEG, JGB를 사용하여 농도별로 실험을 진행하였다. SEM 이미지 분석결과 첨가제가 추가함에 따라 수지상이 미세해지며 첨가제의 농도가 증가함에 따라 DAS(dendrite arm spacing)값이 감소하여 표면적이 증가하였다. BET 비표면적 분석결과 PEG($1.882m^2/g$)보다 JGB($2.119m^2/g$)에서 표면적을 넓히는 효과가 뛰어났다.

  • PDF

Tensile Behavior of Cast-Forged Al-Si-Mg Alloy (주/단조 Al-Si-Mg 합금의 인장 거동)

  • Kim K. J.;Kwon Y.-N.;Lee Y. S.;Jeong S. C.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.329-332
    • /
    • 2004
  • Cast-forging process has a lot of advantages in terms of saving materials along with enhancement of mechanical properties. Therefore, this process has been taken as one of candidate process to manufacturing automotive suspension parts. Since most of cast-forging parts are made with using Al-Si alloys of high castability, the mechanical properties largely depends on the primary ${\alpha}$ and eutectic Si particles. During hot forging step these microstructural features evolve with strain increment. In the present study, the mechanical property evolution was investigated in terms of microstructual evolution with strain. Specially, fracture behavior of A356 alloy was studied to find out how to improve the mechanical properties.

  • PDF

Solidification Characteristics of Squeeze Cast Al Alloy Composites (Squeeze Cast한 Al기지 금속복합재료의 응고거동)

  • Kim, Dae-Up;Kim, Jin;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.11 no.3
    • /
    • pp.208-216
    • /
    • 1991
  • The solidification behavior of the squeeze cast composites of aluminum alloys reinforced with boron fiber($100{\mu}m$) and silicon carbide fibers($140{\mu}m$ and $15{\mu}m$) were investigated. Al-4.5wt%Cu and Al-l0wt%Mg were chosen for the matrix phase of the composites. In the squeeze cast specimen with high thermal difference between fiber and melt, the average secondary dendrite arm spacing(DAS) in reinforced alloy is smaller than that in unreinforced alloy. It was also observed that primary ${\alpha}$ and non-equilibrium eutectic, which seems to be penetrated and solidified at the final stage of the solidification of the matrix, are irregularly distributed around fibers. It is considered that cold fibers serve as heterogeneous nucleation site. While in the remelted and resolidified specimen without temperature difference, the DAS was not changed with reinforcement and microstructure reveals non-equilibrium eutectic with relatively uniform thickness around fibers. It might be evident the nucleation starts at interfiber region. Microsegregation decreases with the decrease in cooling rate and with reinforcement in the as-squeeze cast specimen. Al-10wt% Mg alloy shows less microsegregation than Al-4.5wt%Cu alloy.

  • PDF

The Effect of the Metallic Mold Cooling System on the Solidification Structures and the Mechanical Properties for Al-10%Si Alloy Castings (금형주조한 Al-10%Si합금의 응고조직과 기계적 성질에 미치는 금형의 냉각효과에 관한 연구)

  • Lee, Dong-Youn;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.2
    • /
    • pp.155-162
    • /
    • 1993
  • This study has been focused on the influence of the metallic mold cooling effects on the solidification structures and the mechanical properties for Al-10%Si alloy castings by the variation of pouring temperatures, metallic mold temperatures and Cooling part of metallic mold. The dendrite arm spacing of Al-10%Si alloy was decreased with increasing cooling rate. In case of bottom cooling of metallic mold, DAS was appeared to be $20-22{\mu}m$ and in the middle cooling, it was increased to $36-40{\mu}m$. The DAS decreased proportionally $with(cooling\;rate)^{-3/2}$ at pouring temperatures $680^{\circ}C$ and $(cooling\;rate)^{-1/2}$ at pouring temperature $760^{\circ}C$, but it was proportionally increased to $(local\;solidification\;time)^{1/2-1/3}$ at pouring temperature $680^{\circ}C$ and $760^{\circ}C$. The maximum tensile strength of Al-10%Si alloy casting was obtained in case of bottom cooling of mold at pouring temperature $680^{\circ}C$ and metallic mold temperature $320^{\circ}C$.

  • PDF

Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel (자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.

A Study on the Control of Cast Microstructure in the Aluminum Casting/Forging Process (알루미늄 주조/단조 공정에서 주조조직 제어에 관한 연구)

  • Bae, Won-Byong;Kang, Chung-Yun;Lee, Young-Seok;Lee, Sung-Mo;Hong, Chang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.41-47
    • /
    • 1999
  • The scale of dendritic structure of a cast preform plays a key role in determining the mechanical properties of cast/forged products. In this study, casting experiments are carried out to reduce dendrite arm spacing (DAS) to smaller than 20 ${\mu}$m by increasing cooling rate of the mold and then to spheriodize dendritic structures by addition of alloying elements such as Zr and Ti-B. From the casting experiments, appropriate casting conditions for producing the cast preform of a motorcycle connecting rod are obtained. To obtain fine microstructures of the cast preform, mold temperature must set to be low whilst cooling rate being high. When cooling rate is 10 $^{\circ}C$/s, the size of DAS is 17.4 ${\mu}$m. And the degree of spheriodization of a grain in the cast preform is described by aspect ratio, which is defined as the ratio of major and minor radii of an elliptical grain. When 0.5% Zr and 0.24 % Ti+B are added to the molten aluminum alloy, the best aspect-ratio 0.75 is obtained. After forging the cast preform of a motorcycle connecting rod, the microstructure and mechanical properties of the cast preform are compared with those of the cast/forged product. Cast/forged products are superior in microstructure and in mechanical properties such as ultimate strength, elongation, and hardness.

  • PDF