• Title/Summary/Keyword: DAF process

Search Result 100, Processing Time 0.028 seconds

A Study on Bubbles Generated from Water Plasma for Application of DAF Process

  • Park, Jun-Seok;Yu, Seung-Yeol;Yu, Seung-Min;Hong, Eun-Jeong;Seok, Dong-Chan;Hong, Yong-Cheol;No, Tae-Hyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.232-232
    • /
    • 2011
  • DAF는 기존 침전 공정에 비해 뛰어난 정수 품질과 빠른 처리 시간으로 차세대 정수 공정으로 각광 받고 있다. DAF는 기포 생성 방법에 따라 용존 공기 부상법, 분산 공기 부상법, 진공 부상법, 전해 부상법, 미생물학적 부상법 등이 있다. 이 중 가장 많이 쓰이는 방식은 용존 공기 부상법으로, 과포화 상태의 기체와 액체의 혼합액을 압력을 급격히 감소시켜 기포를 발생 시키는 방법이다. 이 방법은 기포의 발생은 많지만 장비의 크기가 거대하고 시설제조 비용이 많이 드는 단점이 있다. 수중에서 발생되는 플라즈마는 그 구조와 메카니즘에 따라 생성되는 버블의 양을 제어할 수 있음을 확인하였다. 모세관 형태의 전극을 이용한 수중 방전은 전원 공급 장치만 있다면 적은 공간으로도 효과적으로 기포를 생성 할 수 있기 때문에, 수중 방전을 이용하여 기포 발생 후 DAF에 적용 가능한지 알아보고자 한다. DAF공정에서 필요한 요인으로는 기포의 크기, 개수, 성분 물질 등이 있는데, 그 중 가장 핵심은 기포의 크기 이다. 그래서 간단한 전원 장치와 리액터 제작 후 방전에 최적화 된 전극으로 기포를 발생시켜 기포의 크기를 측정하였다. 기포의 크기는 전극의 직경과 방전공간의 비율에 따라 제어가 가능함을 확인하였고 평균 기포의 크기는 약 50 ${\mu}m$로서, DAF에 적용 할 수 있는 크기이다. 일반적으로 기포의 사이즈가 작을수록 입자 제거율이 높은데, 실제 DAF공정에서 사용되는 기포의 사이즈는 80 ${\mu}m$정도 이다. 따라서 개발된 기포 발생장치를 DAF 공정에 응용한다면 높은 효율을 가질 것으로 판단된다.

  • PDF

Abstracted Meta-model for Effective Capabilities Portfolio Management (CPM)

  • Lee, Joongyoon;Yoon, Taehoon;Park, Youngwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.31-41
    • /
    • 2011
  • The purpose of this paper is to provide an abstracted meta-model for executing Capabilities Portfolio Management (CPM) effectively based on DoDAF2.0. The purpose of developing an architecture is for beneficial use of it. A good set of architectural artifacts facilitates the manipulation and use of them in meeting its usage objectives well. Systems engineering methodologies evolve to accommodate or to deal with enterprise or SoS/FoS level problems. And DoD's Capabilities Portfolio Management (CPM) is a good example which demonstrates enterprise or SoS level problems. However, the complexity of the architecture framework makes it difficult to develop and use the architecture models and their associated artifacts. DoDAF states that it was established to guide the development of architectures and to satisfy the demands of a structured, repeatable method for evaluating alternatives which add value to decisions and management practices. One of the objectives of DoDAF2.0 is to define concepts and models usable in CPM which is one of DoD's six core processes. However, DoDAF and various guidelines state requirements for CPM rather than how to. This paper provides methodology for CPM which includes process and tailored meta-models based on DoDAF Meta Model (DM2).

Kinetic Analysis for Paper-mill Wastewater Treatment Using Pure Oxygen Activated Sludge Process (순산소 활성오니공정을 이용한 제지폐수처리의 동력학적 해석)

  • Kim, Sung Soon;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.157-163
    • /
    • 2000
  • An experimental study was conducted to evaluate the treatment efficiency of paper-mill wastewater using pure oxygen activated sludge process. Effects of hydraulic retention time (HRT) and organic loading on process performance and kinetics were investigated. The raw paper-mill wastewater(BOD concentration ${\leq}500mg/L$) and the effluent from dissolved air flotation(DAF) treatment(BOD concentration ${\geq}500mg/L$) were used as influent for pure oxygen activated sludge process. Average BOD removal efficiencies were above 89.3% under 6hours or longer of HRT, while under 3hours of HRT they decreased to about 82%. With the effluent from DAF process, the half saturation constants($K_S$) and the maximum specific substrate removal rate($K_{max}$) were 85 mg/L and 2.25 L/day, respectively. However, with the raw paper-mill wastewater, both $K_S$ and $K_{max}$ increased to 156 mg/L and 3.84 L/day, respectively. The microbial yield coefficient(Y) and the decay coefficient($K_d$) were 0.46 gVSS/gBOD and 0.03 L/day, respectively, with effluent from DAF process. While, Y and $K_d$ were 0.24 gVSS/gBOD and 0.035 L/day, respectively, with the raw paper-mill wastewater.

  • PDF

Treatment of Contaminated Groundwater Containing Petroleum and Suspended Solids Using DAF and Mixed Coagulation Processes (DAF와 혼화응집공정을 이용한 현탁성 고형물 함유 유류 오염 지하수 처리)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.25-32
    • /
    • 2010
  • Contamination of soil and groundwater by the compounds of hydrocarbon petroleum has been widely accepted as the main cause that harms the environments and health. To remove those pollutants, absorbing clothes, activated carbons, or oil-water separation devices with the gravity method are employed for treatment. However, those materials and devices cannot remove the emulsion pollutants despite of their efficiency for removing free products. Therefore, we investigated the problems which occur during the groundwater treatment for the highly concentrated suspended solid particles, which can be resulted from excavation, and to propose methods to remove TPH(Total Petroleum Hydrocarbon). After coagulation experiment with high molecular polymers, the concentration of SS(Suspended Solids) and COD(Chemical Oxygen Demand) turned to satisfy the groundwater quality criteria within 5 minutes while the concentration of TPH failed to meet the water quality standard of effluent. Consequently, the water quality criteria for effluent could not be met by single DAF(Dissolved Air Flotation) process. However all water quality criteria could be satisfied after 20 minutes when coagulation reactions are carried out simultaneously in the DAF reactor.

Measuring Zetapotential of Microbubbles in DAF (용존공기부상법(容存空氣浮上法)(DAF)에서 미세기포(微細氣泡)의 제타전위측정(電位測定))

  • Dock Ko, Seok;Han, Moo Young;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.53-58
    • /
    • 1998
  • Dissolved Air flotation (DAF) has become increasingly important in the field of drinking water treatment, however, the research to investigate the mechanism of collision between bubble and particle has been limited. The electrostatic repulsion forces between them are critical to collide with each other. Zetapotential of bubble and particle show their electrostatic condition. In this research, a setup to measure the zetapotential of rising microbubble is made using electrophoresis method and measured ZP of bubble in our Lab. The results show the effect of pH on zetapotential of bubble. The findings from this research are compared with other results. It will he helpful to understand and explain the mechanism of collisions between bubble and particle on different conditions of bubble charge in DAF process.

  • PDF

Temperature Effect in the process of DAF as pretreatment of SWRO (해수담수화 전처리로서 DAF공정에서 고온의 해수에 대한 영향 특성)

  • Park, Hyunjin;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.807-813
    • /
    • 2012
  • Flocculation and flotation are used as pretreatment steps prior to the reverse osmosis (RO) process. During seawater treatment, high temperature can change the water chemistry of seawater during the process of coagulation. It also affects bubble volume concentration (BVC) and bubble characteristics. Coagulants such as alum and ferric salts at $40^{\circ}C$ can also change flux rates in the seawater reverse osmosis (SWRO) process. In this study, the bubble characteristics in dissolved air flotation (DAF), used as a SWRO pretreatment process, were studied in synthetic seawater at $20^{\circ}C$ and $40^{\circ}C$. The flux of an RO membrane was monitored after dosing the synthetic seawater with coagulants at different temperatures. Results showed that BVC increases as the operating pressure increases and as the salt concentration decreases. The bubble size released at $40^{\circ}C$ is far smaller than that at $20^{\circ}C$The addition of a ferric salt is effective for turbidity removal in synthetic seawater at $20^{\circ}C$; it is more effective than alum. When synthetic seawater was dosed with a ferric salt, the RO membrane flux increased by 27 % at $40^{\circ}C$.

Hydrodynamic Collision Efficiency and Flotation Characteristics of Inorganic Particles in DAF Process (DAF 공정에서 무기 고형입자의 유체역학적 충돌효율과 부상특성)

  • Kwak, Dong-Heui;Kim, Sung-Jin;Lee, Hwa-Kyung;Jung, Heung-Joe;Lee, Jae-Wook;Chung, Paul-Gene
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.655-662
    • /
    • 2002
  • Separation characteristics of inorganic particles occurred during heavy rainwater were investigated in DAF (dissolved air flotation) process. In order to remove the inorganic particles effectively, the collision and flotation efficiencies were examined from a hydrodynamic point of view. Generally, the collision efficiency increased with floc size under the variation of fluid dynamic conditions including inertial force. However, more precise model should be required to analysis the collision efficiency expressed both the physical properties for inorganic particles and hydrodynamic conditions for a reactor.

Collision Efficiency Estimation in the DAF Contact Zone using Computational Fluid Dynamics (전산유체 기법을 이용한 용존공기부상법에서의 접촉도 조건변화에 따른 충돌효율평가)

  • Kim, Sung-Hoon;Yoo, Je-Seon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.201-207
    • /
    • 2004
  • Dissolved air flotation (DAF) is a solid-liquid separation process that uses fine rising bubbles to remove particles in water. Most of particle-bubble collision occurs in the DAF contact zone. This initial contact considered by the researchers to play a important role for DAF performance. It is hard to make up conceptual model through simple mass balance for estimating collision efficiency in the contact zone because coupled behavior of the solid-liquid-gas phase in DAF system is 90 complicate. In this study, 2-phase(gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. For the modeling of turbulent 2-phase flow in the reactor, the standard $k-{\varepsilon}$ mode I(liquid phase) and zero-equation(gas phase) were used in CFD code because it is widely accepted and the coefficients for the model are well established. Particle-bubble collision efficiency was calculated using predicted turbulent energy dissipation rate and gas volume fraction. As the result of this study, the authors concluded that bubble size and recycle ratio play important role for flow pattern change in the reactor. Predicted collision efficiency using CFD showed good agreement with measured removal efficiency in the contact zone. Also, simulation results indicated that collision efficiency at 15% recycle ratio is higher than that of 10% and showed increasing tendency of the collision efficiency according to the decrease of the bubble size.

A Study on Pilot Scale Cyclonic-DAF Reactor for Cyanobacteria Removal (남조류 제거를 위한 선회식 가압부상장치 현장 적용에 관한 연구)

  • Oh, Hong-Sok;Kang, Seon-Hong;Nam, Sook-Hyun;Kim, Eu-Ju;Koo, Jae-Wuk;Hwang, Tae-Mun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.17-28
    • /
    • 2018
  • Cyclonic-dissolved air flotation(Cyclonic-DAF), an advanced form of pressure flotation, applies a structure that enables the forming of twirling flows. This in turn allows for suspended matter to adhere to microbubbles and float to the surface of a treatment tank during the process of intake water flowing through a float separation tank. This study conducted a lab-scale test and pursued geometrical modeling using computational fluid dynamics(CFD) to establish a pilot scale design. Based on the design parameters found through the above process, a pilot cyclonic-DAF system($10m^3/hr$) for removing algae was created. Upon developing the pilot-scale cyclonic-DAF system, a type of algae coagulant(R-119) was applied as the coagulant to the system for field testing through which the removal rates of chlorophyll-a and cyanobacteria were evaluated. The chlorophyll-a and harmful cyanobacteria of the raw water at region B, the field-test site, were found to be $177.9mg/m^3$ and 652,500cells/mL respectively. Treated waters applied with 60mg/L and 100mg/L of algae coagulant presented removal efficiencies of approximately 95% and 97%, respectively. The cyanobacteria cell number of the treated waters applied with 60mg/L and 100mg/L of algae coagulant both that were equal to or less than 1,000cells/mL and were below attention level criteria for the issuance of algae boundary.

토양 세정법을 이용한 실제 유류 오염 토양 및 지하수 정화

  • 강현민;이민희;정상용;강동환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.418-421
    • /
    • 2003
  • Surfactant enhanced in-situ soil flushing was peformed to remediate the soil and groundwater at an oil contaminated site, and the effluent solution was treated by the chemical treatment process including DAF(Dissolved Air Flotation). A section from the contaminated site(4.5m$\times$4.5m$\times$6.0m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average Hydraulic conductivity of 2.0$\times$10$^{-4}$ cm/sec. Two percent of sorbitan monooleate(POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminant section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed by GC(gas-chromatography) for TPH concentration with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit(WWDL). Total 18.5kg of oil (TPH) was removed from the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. Results suggest that in-situ soil flushing and chemical treatment process including DAF could be a successful process to remediate contaminated sites distributed in Korea.

  • PDF