• 제목/요약/키워드: DACON

검색결과 3건 처리시간 0.022초

A Design and Implement of Efficient Agricultural Product Price Prediction Model

  • Im, Jung-Ju;Kim, Tae-Wan;Lim, Ji-Seoup;Kim, Jun-Ho;Yoo, Tae-Yong;Lee, Won Joo
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.29-36
    • /
    • 2022
  • 본 논문에서는 DACON에서 제공하는 데이터셋을 기반으로 한 효과적인 농산물 가격 예측 모델을 제안한다. 이 모델은 XGBoost와 CatBoost 이며 Gradient Boosting 계열의 알고리즘으로써 기존의 Logistic Regression과 Random Forest보다 평균정확도 및 수행시간이 우수하다. 이러한 장점들을 기반으로 농산물의 이전 가격들을 기반으로 1주, 2주, 4주뒤 가격을 예측하는 머신러닝 모델을 설계한다. XGBoost 모델은 회귀 방식의 모델링인 XGBoost Regressor 라이브러리를 사용하여 하이퍼 파라미터를 조정함으로써 가장 우수한 성능을 도출할 수 있다. CatBoost 모델은 CatBoost Regressor를 사용하여 모델을 구현한다. 구현한 모델은 DACON에서 제공하는 API를 이용하여 검증하고, 모델 별 성능평가를 실시한다. XGBoost는 자체적인 과적합 규제를 진행하기 때문에 적은 데이터셋에도 불구하고 우수한 성능을 도출하지만, 학습시간, 예측시간 등 시간적인 성능 면에서는 LGBM보다 성능이 낮다는 것을 알 수 있었다.

사전학습 언어 모델을 활용한 트랜스포머 기반 텍스트 요약 (Transformer-based Text Summarization Using Pre-trained Language Model)

  • 송의석;김무성;이유린;안현철;김남규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.395-398
    • /
    • 2021
  • 최근 방대한 양의 텍스트 정보가 인터넷에 유통되면서 정보의 핵심 내용을 파악하기가 더욱 어려워졌으며, 이로 인해 자동으로 텍스트를 요약하려는 연구가 활발하게 이루어지고 있다. 텍스트 자동 요약을 위한 다양한 기법 중 특히 트랜스포머(Transformer) 기반의 모델은 추상 요약(Abstractive Summarization) 과제에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 하지만 트랜스포머 모델은 매우 많은 수의 매개변수들(Parameters)로 구성되어 있어서, 충분한 양의 데이터가 확보되지 않으면 이들 매개변수에 대한 충분한 학습이 이루어지지 않아서 양질의 요약문을 생성하기 어렵다는 한계를 갖는다. 이러한 한계를 극복하기 위해 본 연구는 소량의 데이터가 주어진 환경에서도 양질의 요약문을 생성할 수 있는 문서 요약 방법론을 제안한다. 구체적으로 제안 방법론은 한국어 사전학습 언어 모델인 KoBERT의 임베딩 행렬을 트랜스포머 모델에 적용하는 방식으로 문서 요약을 수행하며, 제안 방법론의 우수성은 Dacon 한국어 문서 생성 요약 데이터셋에 대한 실험을 통해 ROUGE 지표를 기준으로 평가하였다.

  • PDF

Application of deep convolutional neural network for short-term precipitation forecasting using weather radar-based images

  • Le, Xuan-Hien;Jung, Sungho;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.136-136
    • /
    • 2021
  • In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.

  • PDF