• 제목/요약/키워드: DA receptor supersensitivity

검색결과 4건 처리시간 0.024초

Inhibition by MK-801 of Morphine-Induced Conditioned Place Preference and Postsynaptic Dopamine Receptor Supersensitivity in Mice

  • Kim, Hack-Seang;Park, Woo-Kyu;Jang, Choon-Gon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.214-214
    • /
    • 1996
  • Intraperitoneal injection of morphine (5 mg/kg) in mice every other day for 8 days produced conditioned place preference (CPP). CPP effects were evaluated by assessing the difference in time spent in the drug-paired compartment and the saline-paired compartment of the place conditioning apparatus. The injection of a non-competitive NMDA antagonist, MK-801 (0.05 and 0.1 mg/kg, i.p.), prior to and during morphine treatment in mice Inhibited morphine-induced CPP. The development of postsynaptic dopamine (DA) receptor supersensitivity in mice displaying a morphine-induced CPP was evidenced by the enhanced response in ambulatory activity to the DA agonist, apomorphine (2 mg/kg). MK-801 inhibited that development of postsynaptic DA receptor supersensitivity MK-801 also inhibited apomorphine-induced climbing behavior, suggesting that MK-801 Inhibits dopaminergic activation mediated via the NMDA receptor.

  • PDF

Inhibitory Effects of Glycine on Morphine-Induced Hyperactivity, Reverse Tolerance and Postsynaptic Dopamine Receptor Supersensitivity in Mice

  • Shin, Kyung-Wook;Hong, Jin-Tae;Yoo, Hwan-Soo;Song, Sukgil;Oh, Ki-Wan
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1074-1078
    • /
    • 2003
  • The effects of glycine on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity in mice was examined. A single administration of morphine (10 mg/kg, s.c.) induced hyperactivity as measured in mice. The morphine-induced hyperactivity was inhibited by pretreatment with glycine (100, 200 and 400 mg/kg, i.p.). In addition, it was found repeated administration of morphine (10 mg/kg, s.c.) to mice daily for 6 days caused an increase in motor activity which could be induced by a subsequent morphine dose, an effect known as reverse tolerance or sensitization. Glycine (100, 200 and 400 rng/kg, i.p.) also inhibited morphine-induced reverse tolerance. Mice that had received 7 daily repeated administrations of morphine also developed postsynaptic dopamine receptor supersensitivity, as shown by enhanced ambulatory activity after administration of apomorphine (2 mg/kg, s.c.). Glycine inhibited the development of postsynaptic dopamine receptor supersensitivity induced by repeated administration of morphine. It is suggested that the inhibitory effects of glycine might be mediated by dopaminergic (DAergic) transmission. Accordingly, the inhibition by glycine of the morphine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity suggests that glycine might be useful for the treatment of morphine addiction.

Ginseng Saponins Prevent the Adverse Effect of Dependence-liable Drugs

  • Kim, Hack-Seang;Lim, Hwa-Kyung
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.168-173
    • /
    • 1998
  • A single administration of cocaine (CO), morphine (MOR) and methamphetamine (MA) showed hyperactivity in mice. Ginseng total saponin (GTS), ginsenosides Rbl and Rgl inhibited the hyperactivity induced by the drugs. The repeated administration of CO, MOR and MA showed the development of psychological dependence showing a.: the development of conditioned place preference (CPP) in mice and the development of dopamine (DA) receptor supersensitivity showing as sensitization of the drugs. GTS and Rgl inhibited the development of not only psychological dependence but also of DA receptor supersensitivity induced by CO and MA Rbl prevented also the development of psychological dependence and DA receptor supersensitivity induced by CO and MA but not by MOR. These results suggest that the development psychological dependence induced by the drugs is closely related with the development of DA receptor supersensitivity since both phenomena were inhibited by them. Apomorphine induced climbing behavior was also inhibited by G75 but not by both of Rbl and Rgl, indicating that GTS modulate dopaminergic action at both of pre and postsynaptic sites, but both of Rbl and Rgl , only at the presynaptic site. These results suggest that active components acting at the postsynaptic site exist in GTS. In this study, it was found that GTS, ginsenosides Rbl and Rgl inhibited tyrosine hydroxylase (TH) and these components exerted inhibitory effects on both Cal' currents and $\Delta$ Cm in rat adrenal chromaffin cells. These results suggest that G75 and ginsenosides regulate catecholamine synthesis and secretion. Meanwhile, it has been demonstrated that Rbl, at high doses has more powerful inhibition of cartecholamine secretion at the presynaptic site than Rbl. Therefore, it was presumed that inhibition of morphine induced psychological dependence by Rgl, but not by Rbl results from differences in the extent of this inhibitory action on dopaminergic synthesis and secretion.

  • PDF

Haloperidol 투여후 금단기간에 따른 백서 선조체의 [$^3H$]Spiperone 결합 및 Dopamine 대사물질의 변화 (Time-Course of [$^3H$]Spiperone Binding and Dopamine Metabolism in the Rat Striatum after Withdrawal from Haloperidol Ttreatment)

  • 이중용;공보금;김용관;정청;김선희;김영훈
    • 생물정신의학
    • /
    • 제3권1호
    • /
    • pp.51-56
    • /
    • 1996
  • The effects of 3 week treatment with haloperidol(2mg/kg/day, i.p.) on dopamine(DA) D2 receptor and DA metabolism in rat striata were studied at various time points after withdrawal from the drug treatment. Striatal DA D2 receptors were characterized with the radioligand 0.5nM [$^3H$]Spiperone. Dopamine(DA), homovanillic acid(HVA), 3,4-dihydroxyphenyl acetic acid(DOPAC) in rat striatum were measured with the high performance liquid chromatography. Drug withdrawal for 1 week induced significant increase in the number of D2 receptor in striatum after withdrawal for 1 week(p<0.05), and then this change was restored to control level during the withdrawal time of 2 and 4 weeks. There was no difference in striatal concentrations of DA and its metabolites among the groups. In conclusion, one-week withdrawal from chronic haloperidol treatment induced DA D2 receptor supersensitivity in the striatum, and that was normalized rapidly. Though this adaptive change in DA receptors, it may not affect the metabolism of DA in striatum.

  • PDF