• Title/Summary/Keyword: D-optimal Design

Search Result 1,317, Processing Time 0.032 seconds

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Study on Variable Systems for Compressor and Turbine and its Control Scheme (압축기 정익, 터빈 노즐 가변 메카니즘 및 제어기법 연구)

  • Kim, Sangjo;Kim, Donghyun;Bae, Kyoungwook;Kim, Dae-il;Son, Changmin;Kim, Kuisoon;Lee, Daewoo;Go, Jeungsang;Choi, Dong-Whan;Kim, Myungho;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.1-14
    • /
    • 2015
  • In case of a gas turbine engine for supersonic operation, the engine have a wide range of operating inlet mass flow rate and required high performance such as thrust and fuel consumption. Therefore, variable system and its optimal control logic are essentially needed. In this work, a method for performance prediction of a gas turbine engine with variable system compressor and its control scheme were developed. Conceptual design of compact acuation system for the operation of the variable system was also conducted. The performance of a low-bypass ratio mixed flow turbofan engine was analyzed, and it was observed that the surge margin of the engine is improved at off-design condition by applying the control scheme.

Effects of Timing of Initial Cutting and Subsequent Cutting on Yields and Chemical Compositions of Cassava Hay and Its Supplementation on Lactating Dairy Cows

  • Hong, N.T.T.;Wanapat, M.;Wachirapakorn, C.;Pakdee, P.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1763-1769
    • /
    • 2003
  • Two experiments were conducted to examine the production and quality of cassava hay and its utilization in diets for dairy cows. In experiment I, a $2{\times}2$ Factorial arrangement in a randomized complete block design with 4 replications was carried out to determine the effects of different initial (IC) and subsequent cutting (SC) on yield and composition of cassava plant. The results revealed that cassava could produce from 4 to 7 tonne of DM and 1.2 to 1.6 tonne of CP for the first six months after planting. CP content in cassava plant ranged from 20.8 to 28.5% and was affected by different SC regimes. Condensed tannin in cassava foliage ranged from 4.9 to 5.5%. Initial cutting at 2 months with subsequent cutting at 2 month intervals was the optimal to obtain high dry matter and protein yield. In the second experiment, five crossbred Holstein-Friesian cows in mid lactation with an initial live-weight of 505${\pm}6.1kg$ and average milk yield of 10.78${\pm}1.2kg/d$ were randomly assigned in a $5{\times}5$ Latin square design to study the effects of 2 levels of CH (1 and 2 kg/hd/d) and concentrate (1 to 2 kg of milk and 1 to 3 kg of milk) on milk yield and milk composition. The results showed that cassava hay increased rumen $NH_3-N$ and milk urea nitrogen (MUN) (p<0.05). Cassava hay tended to increase milk production and 4% FCM. Milk protein increased in cows fed cassava hay (p<0.05). Moreover, cassava hay could reduce concentrate levels in dairy rations thus resulting in increased economic returns. Cassava hay can be a good source of forage to reduce concentrate supplementation and improve milk quality.

Optimization of biomethane production by biogas upgrading process using response surface mothodolgy (반응표면분석을 이용한 바이오가스 고질화공정을 통한 바이오메탄)

  • Park, Seong-Bum;Sung, Hyun-Je;Shim, Dong-Min;Kim, Nack-Joo
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.62-73
    • /
    • 2014
  • This research was focused to apply response surface methodology for optimization of bio-methane production by biogas upgrading process. Methane concentration(Y1) and methane efficiency(Y2) on biogas upgrading process were mathematically described as being modeled by the use of the Box-Behnken design on response surface methodology. The results of ANOVA(analysis of variance) about models, the probability value of the methane concentration and methane recovery response surface model are 0.0001 and 0.0001, respectively and coefficient of determination($R^2$) are 0.9788 and 0.9710, respectively. The response surface model is proved of high reliability and suitability. The operation pressure had the greatest influence to methane concentration than other operation parameters and the PSA rotary valve velocity had the greatest influence to methane recovery than other operation parameters. Optimal condition of biogas upgrading process for production of $100Nm^3/hr$ bio-methane were operation pressure 8.0bar and outlet flow rate 31.55RPM, respectively. At that operation condition the methane concentration of bio-methane was 97.13% and methane recovery in biogas upgrading process was 75.89%.

A Study on Optimal Location Selection and Analytic Method of Landmark Element in terms of Visual Perception (시각적 측면에서 랜드마크 요소의 최적입지선정 분석방법에 관한 연구)

  • Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6360-6367
    • /
    • 2015
  • The location selection of the element that should guarantee easy visual perception, like the landmark, is the a topic that appears much in the design process. Recently, a graph analysis technique using computers has been applied in order to evaluate the visibility of the visual element, but the analytic frame is flat and the setting of the visual pont and the matrix are fixed so there were great limitations in obtaining the results of the practical analysis. Thus, this study presented Nondirectional Multi-Dimensional Calculation (MDVC-N), an analytic methodology available for the analysis of the dynamic visual point in the 3D environment. It thus attempted to establish the analytic application using the 3D computer graphics technology and designed a script structure to set the visual point and the matrix. In addition to that, this study tried to verify the analytic methodology by applying the complex land as an example model, where buildings in various heights of terrains with a high-differences are located, verifying the same analytic methodology. It thus tried to identify the visual characteristics of each alternative location. The following results were gained from the study. 1) The visibility can be measured quantitatively trough the application of the 6-alternatives. 2) Using the 3dimensional graph, intuitive analysis was possible. 3) It attempted to improve the analytic applicability by calculating the results corrected as a variable behavior from the local integration variable of the space syntax.

Electric Vehicle Wireless Charging Control Module EMI Radiated Noise Reduction Design Study (전기차 무선충전컨트롤 모듈 EMI 방사성 잡음 저감에 관한 설계 연구)

  • Seungmo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.104-108
    • /
    • 2023
  • Because of recent expansion of the electric car market. it is highly growing that should be supplemented its performance and safely issue. The EMI problem due to the interlocking of electrical components that causes various safety problems such as fire in electric vehicles is emerging every time. We strive to achieve optimal charging efficiency by combining various technologies and reduce radioactive noise among the EMI noise of a weirless charging control module, one of the important parts of an electric vehicle was designed and tested. In order to analyze the EMI problems occurring in the wireless charging control module, the optimized wireless charging control module by applying the optimization design technology by learning the accumulated test data for critical factors by utilizing the Python-based script function in the Ansys simulation tool. It showed an EMI noise improvement effect of 25 dBu V/m compared to the charge control module. These results not only contribute to the development of a more stable and reliable weirless charging function in electric vehicles, but also increase the usability and efficiency of electric vehicles. This allows electric vehicles to be more usable and efficient, making them an environmentally friendly alternative.

Effect of Grinding on Solubility and Particle Size of Pefioxacin by Planetary Ball-Mill (유성볼밀을 이용한 난용성 Pefloxacin의 분쇄조작에 의한 입자 설계)

  • 임영근;김진우;최우식;야마모토;정해영
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.194-200
    • /
    • 1999
  • Grinding aid is a necessary unit operation when the raw materials are handled in solid form, and the purpose is to improve the bioavailability by reducing the particle size. For the particle design of pefloxacin, the dry planetary ball-mill was used. With the drying process, 330 g of zirconia ball with its size of 2 mm in diameter and 10 g of pefloxacin were transferred to the pot and mixed well. The mixture was ground at 112 rpm (60 Hz) for 15, 30, and 60 min, respectively. The most satisfactory grinding products were generated at 15 min of grinding time for their particle size. The volume mean diameter $\X_50$ of the grinding products was 2.97 $\mu$m. X-ray diffraction (XRD), differential scanning calorimeter (DSC), and infrared spectroscopy (IR) patterns were relatively unchanged before pulverizing pefloxacin and in the progress of grinding. Thus, these results suggest that this pulverizing method can be used for grinding products without evident effect on stability of the drug pefloxacin. Dissolution test was carried out to set up the optimal detective condition against residual antibacteria of fish by HPLC. The grinding pefloxacin for 15 min is most effective in dissolution test.

  • PDF

Design of a Logistics Decision Support System for Transportation Mode Selection considering Carbon Emission Cost (탄소배출비용을 고려한 물류의 최적 운송수단 의사결정 시스템 설계)

  • Song, Byung-Jun;Koo, Je-Kwon;Song, Sang-Hwa;Lee, Jong-Yun
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.371-384
    • /
    • 2011
  • This paper considers logistics decision support system which deals with transportation mode selection considering transportation and carbon emission cost. Transportation and carbon emission costs vary with the choice of transportation modes and to become competitive companies need to find proper transportation modes for their logistics services. However, due to the restricted capacity of transportation modes, it is difficult to balance transportation and carbon emission costs when designing logistics network including transportation mode choice for each service. Therefore this paper aims to analyze the trade-off relationship between transportation and carbon emission cost in mode selection of intermodal transportation and to provide optimal green logistics strategy. In this paper, the logistics decision support system is designed based on mixed integer programming model. To understand the trade-off relationship of transportation and carbon emission cost, the system is tested with various scenarios including transportation of containers between Seoul and Busan. The analysis results show that, even though sea transportation combined with trucking is competitive in carbon emission per unit distance travelled, the total cost of carbon emission and transportation for the sea transportation may not have competitive advantage over other transportation modes including rail and truck transportation modes. The sea-based intermodal logistics service may induce detours which have negative impacts on the overall carbon emission. The proposed logistics decision support system is expected to play key role in green logistics and supply chain management.

The Effect of Horseradish Powder Level in Fattening Pig Diet on Odorous Compound Concentration from Manure (비육돈 사료의 고추냉이 첨가수준별 분뇨의 악취물질 농도 변화)

  • Lee, K.H.;Hwang, O.H.;Park, K.H.;Yang, S.H.;Song, J.I.;Jeon, J.H.;Lee, J.Y.;Ohh, S.J.;Sung, H.G.;Choi, D.Y.;Cho, S.B.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.41-46
    • /
    • 2012
  • This study was performed to test the effect of horseradish powder in fattening pig diet on odorous compound concentration from manure. Twenty fattening boars [Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] weighing an average body weight of $68.4{\pm}4.95}$ kg were randomly assigned to one of 4 treatments (horseradish level in diets: 0, 0.01, 0.02, 0.03%) based on their body weight. This experiment was a randomized complete block (RCB) design using 5 pigs per treatment with 1 pig per metabolizable cage. Pigs were fed experimental diet (amount proportional to 3% of their body weight) twice a day (09:00 and 16:00) for 7 d after having 14 d adaptation period. Experimental diets were mixed with water by 1:2.5 v/v. Concentration of volatile fatty acids (VFAs) was highest (p<0.05) when pigs fed diet with 0.02% horseradish powder. Level of phenol compounds including phenol and p-cresol were decreased (p<0.05) in 0.01~0.02% horseradish treatment group compared with control group. Concentration of indoles including indole and skatole was lowest (p<0.05) in 0.03% horseradish treatment group compare to others. Therefore, results from our current study suggest that the optimal levels of horseradish powder in diet for reducing phenol and indole compounds in pig manure were 0.02 and 0.03%, respectively.