• 제목/요약/키워드: D-optimal Design

검색결과 1,314건 처리시간 0.031초

가스터빈용 Alloy718 커플링볼트의 열간 헤딩 공정설계 및 기계적 특성 평가 (Design of Hot Heading Process and Evaluation of Mechanical Properties of Alloy718 Coupling Bolt for Gas Turbine)

  • 최홍석;이정민;고대철;이선봉;김병민
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.189-196
    • /
    • 2008
  • Alloy718 is the nickel-base super alloy well used as gas turbine components under severe operating conditions because of its high strength at high temperature and excellent creep resistance. In this study, a coupling bolt for the gas turbine component is manufactured by hot heading process instead of whole machining in order to improve the mechanical properties. Die shape for the hot heading has been designed by general design rule of hot forging and also optimal process condition has been investigated by finite element method. The initial billet temperature and the punch speed have been determined by $1150^{\circ}C$ and 600mm/s on the basis of finite element analysis, respectively. The coupling bolt has been manufactured by 200ton screw press and evaluated by experiment in order to investigate the mechanical properties. As a result of experiment, the mechanical properties such as hardness, tensile strength and creep behavior have been superior to those manufactured by machining.

선박용 중속 디젤 기관의 로바스트 속도제어기 개발 (Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.27-35
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

  • PDF

선박용 중속 디젤 기관의 로바스트 속도제어기 개발 (Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.349-349
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

Design of piezoelectric transducer arrays for passive and active modal control of thin plates

  • Zenz, Georg;Berger, Wolfgang;Gerstmayr, Johannes;Nader, Manfred;Krommer, Michael
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.547-577
    • /
    • 2013
  • To suppress vibration and noise of mechanical structures piezoelectric ceramics play an increasing role as effective, simple and light-weighted damping devices as they are suitable for sensing and actuating. Out of the various piezoelectric damping methods this paper compares mode based active control strategies to passive shunt damping for thin plates. Therefore, a new approach for the optimal placement of the piezoelectric sensors/actuators, or more general transducers, is proposed after intense theoretical investigations based on the Kirchhoff kinematical hypotheses of plates; in particular, modal and nilpotent transducers are discussed in detail. Based on the proposed distribution a discrete design for modal transducers is implemented, tested and verified on an experimental setup. For active control the modal sensors clearly identify the eigenmodes, whereas the modal actuators impose distributed eigenstrains in order to reduce the transverse plate vibrations. In contrast to the modal control, passive shunt damping works without requiring additional actuators or auxiliary power and can therefore act as an autonomous system, but it is less effective compensating the flexible vibrations. Exemplarily, an acryl glass plate disturbed by an arbitrary force initialized by a loudspeaker is investigated. Comparing the different methods their specific advantages are highlighted and a significant broadband reduction of the vibrations of up to -20dB is obtained.

인공고관절의 설계인자들이 해리현상에 미치는 영향에 대한 해석 (Analysis of Loosening Phenomenon in Artificial Hip Joint Application Related to Design Parameters)

  • 김영은;정정화
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권2호
    • /
    • pp.155-162
    • /
    • 1993
  • The human's biomechanical structure keeps an optimal state by adapting the original biomechanical structure according to a change in the physical environment. This phenomenon is believed to be the main cause of loosening of the total hip replacement which is used widely in these days. In this study the bone density change due to artificial hip joint, which is generally believed as bone-remodeling, was investigated by the finite element method. For this, 2-D FEM models with 4 nodal point elements were constructed for intact and implanted cases. The density was calculated by comparing the relative amounts of effective stress for these two cases. In this way, calculated new density values were used in the next step as input values and this procedure repeated until convergence was obtained. Severe density change was detected at the femoral cortex of the proximal-medial side as expected. Moreover, following surprising result was found from this analysis. Titanium alloy prosthesis showed less density change compared to stainless steel prosthesis at earlier stage, however, almost same amount of the density change was detected at final stage. It was also found that other design parameters could not significantly affect its density change.

  • PDF

콘크리트용 표준물질(Standard Reference Materials)개발의 최적배합비율 결정을 위한 기초연구 (A Fundamental Study on the Determination of Optimal Mixing Ratio for Development of Standard Reference Materials for Concrete)

  • 이동규;최명성
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.111-118
    • /
    • 2019
  • Recently, a variety of special concrete structures have been designed in domestic and overseas construction markets and more advanced construction technology is required. Therefore, it is necessary to secure quantitative construction technology. For this purpose, it is essential to develop a standard reference material having a constant flow performance and quality to evaluate quantitative performance. On the other hand, the flowability of the concrete is greatly influenced by the flowability of the cement paste. Also, in consideration of design strength and workability, mix design is carried out at various mixing ratios according to the purpose of the site. Therefore, in this study, based on the derived components of standard reference materials for cement paste, we suggested mixing ratio of standard reference materials that can uniformly simulate the flow characteristics of cement paste according to W/C. As a result, it was found that the yield stress was determined by the ratio of water and glycerol but plastic viscosity was controled by limestone content. Finally, the ratio of standard reference materials to simulate the rheological range of cement paste by W/C was suggested.

핀튜브형 흡착탑에서 열 및 물질전달 수치해석 (Numerical Analysis of the Heat and Mass Transfer in a Fin Tube Type Adsorber)

  • 권오경;정재동
    • 설비공학논문집
    • /
    • 제25권8호
    • /
    • pp.457-463
    • /
    • 2013
  • Nowadays, adsorption chillers have been receiving considerable attention, as they are energy saving and environmentally benign systems. A fin tube type heat exchanger in which adsorption/desorption takes place is required with more compact size. The adsorption chiller is expected to have high energy efficiency in utilizing the waste heat exhausted from a process. The objectives of this paper are to scrutinize the effect of design parameters on the adsorption performance, especially the fin pitch of the fin tube, and to develop an optimal design fin tube heat exchanger in a silica gel/water adsorption chiller. From the numerical results, the fin pitch of 2.5 mm shows the highest adsorption rate, compared to other fin pitches, such as 5 mm, 7.5 mm and 10mm. Also, the adsorption rate is affected by the cooling water and hot water temperature.

Multi-response Optimization for Unfertilized Corn Silk Extraction Against Phytochemical Contents and Bio-activities

  • Lim, Ji Eun;Kim, Sun Lim;Kang, Hyeon Jung;Kim, Woo Kyoung;Kim, Myung Hwan
    • 산업식품공학
    • /
    • 제21권3호
    • /
    • pp.256-266
    • /
    • 2017
  • This study was designed to optimize ethanol extraction process of unfertilized corn silk (UCS) to maximize phytochemical contents and bioactivities. The response surface methodology (RSM) with central composite design (CCD) was employed to obtain the optimal extraction conditions. The influence of ethanol concentration, extraction temperature and extraction time on total polyphenol contents, total flavonoid contents, maysin contents, 2,2-diphenyl-1-picrylhydrazyl(DPPH) radical scavenging activities and tyrosinase inhibition were analyzed. For all dependable variables, the most significant factor was ethanol concentration followed by extraction temperature and extraction time. The following optimum conditions were determined by simultaneous optimization of several responses with the Derringer's desirability function using the numerical optimization function of the Design-Expert program: ethanol concentration 80.45%, extraction temperature $53.49^{\circ}C$, and extraction time 4.95 h. Under these conditions, the predicted values of total polyphenol contents, total flavonoid contents, maysin contents, DPPH radical scavenging activity and tyrosinase inhibition were $2758.74{\mu}g\;GAE/g$ dried sample, $1520.81{\mu}g\;QUE/g$ dried sample, 810.26 mg/100g dried sample, 56.86% and 43.49%, respectively, and the overall desirability (D) was 0.74.

사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VI) - 지반의 허용압축지지력 산정용 표해 또는 도해 - (A Study(VI) on the Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Axial Compressive Bearing Capacity Prediction Table Solution or Chart Solution -)

  • 남문석;권오균;박민철;이창욱;최용규
    • 한국지반공학회논문집
    • /
    • 제35권11호
    • /
    • pp.75-95
    • /
    • 2019
  • 본 연구에서는 사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에 대한 수치해석 결과를 분석하여 정리한 도표 또는 도해로부터 매입 PHC말뚝의 동원지지력을 구하는 방법을 제안하였다. 즉, 수치해석 결과인 하중-침하량 곡선에서 5% 직경에 해당하는 침하량에서 발현된 사질토층의 동원주면마찰력, 풍화암층의 동원주면마찰력과 동원선단지지력을 산정할 수 있는 표해 또는 도해를 제안하였다. 이때 허용압축지지력은 동원 지지력에 안전율 3.0을 적용하여 산정하였다. 사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝의 허용압축지지력은 사질토층의 허용주면마찰력과 풍화암층의 허용주면마찰력 및 허용선단지지력을 합산하여 산정하는 것으로 제안하였고, 각 허용압축지지력 성분을 구할 수 있는 절차도 제시되어 있다. 본 연구에서 제안된 동원지지력 산정용 표해(또는 도해)를 사용할 경우, 적정 설계에서 PHC말뚝의 설계효율(DE)은 85%로 나타났으며, 따라서 최적 설계에서는 PHC말뚝의 장기허용압축하중(Pall) 까지도 활용할 수 있는 것으로 나타났다. 그리고 PHC말뚝의 우수한 압축하중 지지 성능을 효과적으로 활용하기 위하여 지반의 허용압축지지력(Qall)이 말뚝의 허용압축하중(Pall) 이상이 될 수 있도록 설계할 것을 권장하였다.

양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작 (Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection)

  • 최진솔;정헌호
    • 청정기술
    • /
    • 제28권4호
    • /
    • pp.323-330
    • /
    • 2022
  • 미세유체 종이-기반 분석 장치는 최근 현장 진단 및 환경 물질 감지를 포함한 다양한 적용가능성으로 주목을 받고 있다. 본 연구는 적은 비용과 간단한 검출 방법으로 중금속을 빠르게 검출할 수 있는 3D-μPAD를 제작하기 위해 PDMS 양면 인쇄 방법을 제안하였다. 3D-μPAD 디자인은 레이저 커팅으로 아크릴 스탬프에 적용할 수 있으며, 제작된 스탬프에 PDMS 고분자를 스핀 코팅 후 양면접촉인쇄 방식 도입을 통해 3차원 형태의 소수성 장벽 형성에 필요한 조건을 확인하였다. 구체적으로 소수성 장벽 형성 조건인 고분자 농도, 스핀 코팅 속도 및 접촉 시간에 따라 PDMS 소수성 장벽 면적과 친수성 채널의 면적 변화를 분석함으로써 3D-μPAD 제작 공정 조건 최적화를 수행하였다. 최적화된 μPAD로 니켈, 구리, 수은 이온, pH를 다양한 농도에서 검출하였고 이를 ImageJ 프로그램으로 분석하여 grayscale 값으로 정량화 하였다. 이를 통해 3D-μPAD를 제작함으로써 특별한 분석 기기 없이 다양한 중금속 비색 검출을 수행함으로써 조기진단 바이오 센서로의 응용 가능성을 증명하였다. 이 3D-μPAD는 휴대가 간편한 다중 금속이온 검출 바이오센서로서, 신속한 현장 모니터링이 가능하므로 개발도상국 같은 자원이 제한된 지역에서 유용하게 사용 가능하다.