• Title/Summary/Keyword: D-efficiency

Search Result 6,882, Processing Time 0.033 seconds

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

A Study on Medium-Sized Enterprises of Japan (일본의 중견기업에 관한 연구 : 현황과 특징, 정책을 중심으로)

  • Kang, Cheol Gu;Kim, Hyun Sung;Kim, Hyun Chul
    • Korean small business review
    • /
    • v.32 no.2
    • /
    • pp.209-223
    • /
    • 2010
  • Korea's business is composed of a few large-sized enterprises (which can be abbreviated as LSE) and a majority of small-sized enterprises (SSE). Although there has been a growing recognition of the need for the development of medium-sized enterprises (MSE) which can serve as a link between SSE and LSE, as yet there has not yet been a consensus on the definition, characteristics and the function of the MSE in Korea. Nowadays, the world is being globalized, and Japan and China are in competition to ne a great economic power. While East Asia is experiencing rapid changes, promoting MSE which can secure flexibility and efficiency through covering up the limitation of LSE and SSE is needed in order to respond the global market which is being specialized. The features of MSE in Japan can be listed as follows. First, the MSE in Japan is developing the company through getting into niche markets which are hard for major companies to enter rather than developing markets in order to compete against major companies directly. While MSEs are endeavoring to build the business firmly in the domestic market, they can possess special and competitive technical skills through trials and errors; so that they can get a chance develop their business through independent business system rather than putting their effort to compete against major companies. Second, from the MSEs with competitive edge in the market, there are many contributions to the national exportation. Those MSEs produce in domestic and maintain the quality of high price products which need cutting-edge technology, while they relocate the low and middle priced goods to the country where manufacturing costs are low, so that they can maintain the price competitiveness. Third, the industrial structure in Japan is formed from dual structure between major companies and small sized companies. In other words, in Japan's industrial structure which are composed of subcontract structure, this dual structure has taken a major role of small sized companies' growth and manufacturing businesses' international competitive power. Forth, MSE in Japan adopt a strategy of putting their value on qualitative scale growth rather than quantitative scale growth. In this paper, the case of Japanese MSE is analyzed. Along with its long history of Industrialization, Japan has a corporate environment where the SSEs can develop as a MSE and later a LSE through a full-support system. Among its SSEs, there are a number of world class corporations equipped with a large domestic market, win-win cooperation with the LSEs and an independent technology development. It can also be observed that these SSEs develop into MSEs with sustainable growth potentials. This study will focus on the condition under which the MSEs of Japan have been developed, and how they have survived the competition between SSEs and LSEs. Through this study, this paper attempts to offer solutions to Korea's polarization between the SSE and LSE, while providing the basis for SSEs revitalization. In general, if both extremities phenomenon deepen between LSE and SSE, there are possible fears of occurring disutility in national economy by the monopolization of LSE. For that reason, enterprise group, which can make SSE or MSE compete LSE in some area and ease the monopoly and oligopoly problem, is needed. This awareness has been shared for ages long. Nevertheless, there is no legal definition for MSE in Japan, and there is no definition about the enterprise size or unified view of MSE between scholars, but it is defined differently by each of academical person or research institution and study meeting. For that reason, this paper will organize the definition of MSE in Japan, and then will propose the characteristics of the background which has made MSE secure competitiveness and sustainable growth in global market. This study focus on that because through this process, the positive change to the awareness of MSE can be proposed in Korea and to seek the policy direction for building institutional framework which can make SSE become MES. Through this way, the fundamentals for SSE to become MSE can be managed and some appropriate suggestions which will be able to make MSE enter the global market in the future can also be proposed. Due to these facts, this study is very important and well timed task. In a sense of this way, this study will examine the definition and role of MSE in Japan. after this examination, this study will deal with the status, special feature, and promotion policy for MSE. Through this analysis of MSE in Japan, the foundation which be able to set the desirable role model for MSE in Korea can be proposed. Also, the political implication which is needed to push ahead to contribute to creating employment and economic growth through sustainable growth of MSEs in economic system of Korea can be offered through this study. It has been found that Japan's MSE functions as an indispensable link among various industrial structures by holding a significant position in employment rate, production and value added. Although the MSEs took up less than 1% of the entire number of businesses with 2700 manufacturing firms and 7000 non-manufacturing firms, its employment ratios are about 15%, while taking about 25% of the manufacturing industry's exports. In industries such as machinery and electronics which is considered Japan's major industry, the MSEs showed a higher than average ratio of manufacturing exports and employment rate. It can be analyzed that behind Japan's advantageous industries, close and deeply knit MSEs exist. Although there are no clearly stated policies geared towards the MSEs by the Japanese government, various political measures exist such as the R&D Project and the inducement of cooperation between enterprises which gives room for MSEs to participate in the SSE policies. In relation to these findings, the following practical measures can be considered in order to revitalize Korea's MSEs: First, there is a need for a legal definition of MSE and the incentives to provide legal support for its growth. Second, if a law to support the MSEs is established, it could provide a powerful inducement for the SSE to grow as a MSE, rather than stay as a SSE. Third, there is a need for a strategy of MSEs to establish a stable base in the domestic market and then advance to the global market with the accumulated trial and error and competitiveness. Fourth, the SSE themselves need the spirit of entrepreneurship in order to make the leap to a MSE. Because if nothing is to be changed about the system on the firms that grew, and the parts of the past custom was left to be managed alone, confusion and absence of management can take place. No matter how much tax favors the government will give and no matter how much incentive there could be through the policies, there are limits for industries to higher the ability to propagate. And because of that it is a period where industries need their own innovative skills to reform their firms.