• Title/Summary/Keyword: D-BEM

Search Result 117, Processing Time 0.025 seconds

Estimate of the power characteristics of the 500kw wind turbine based on 3D numerical solutions (500kW급 풍력터빈의 성능평가에 관한 수치해석적 연구)

  • KIM Beom-Seok;LEE Jin-Seok;KIM Jeong-Hwan;LEE Do-Hyung;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.140-145
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and compare to calculation data(BEM method) from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes Solvers are considered a very serious contender. We has used the CFD software package CFX-TASC flow as a modeling tool to predict the power performance of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$ and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

Study on the damage effect to the Gas pipeline coating by the crashed stone backfill material (쇄석을 가스배관 채움재로 사용시 배관피복에 미치는 영향 연구)

  • Cho Sung Ho;Jeon Kyung Soo;Li Seon Yeob;Cho Yong Bum;Kho Young Tei
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.23-27
    • /
    • 1998
  • To protect the underground pipeline from the mechanical damage and to enhance the cathodic protection effect, the river sand has been backfilled traditionally around the buried pipeline. However, river sand became depleted and expensive. One has to seek for the economic alternative materials. Crashed stone is a good candidate for the backfill material. In this study, how much the particle size and shape of the crashed stone can effect on the gas pipeline coating was examined. A series of laboratory and field test was performed. In the Lab, the increasing loads were applied to the coated pipeline surrounded by the crashed stone, where no significant damage was observed.

  • PDF

Mathematical Modeling on the Corrosion Behavior of the Steel Casing and Pipe in Cathodic Protection System (음극방식 시스템에서의 압입관과 배관의 부식거동에 관한 수학적 모델링)

  • Kim Y.S.;Li S.Y.;Park K.W.;Jeon K.S.;Kho Y.T.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.40-46
    • /
    • 1998
  • Mathematical modeling on the corrosion of the steel casing and main pipe due to the protection current resulting from a cathodic protection system was carried out using boundary element method. The model is consisted of Laplace's equation with non-linear boundary conditions(Tafel equations) and the iterative technique to determine the miexed potential of the steel casing. The model is applied to the normal steel casing section as well as abnormal one with defects such as metal touch and insulation defects. From the modeling procedure, we can calculate the potential distributions and current density distributions of the system. The theoretical results of the qualitatiive corrosion aspect along the steel casing and main pipe agree well with the experimental results within the experimental conditions studied.

  • PDF

Reflection of Porous Wave Absorber Using Quasi-linear Numerical Model (준선형 수치모델을 이용한 투과성 소파장치의 반사율)

  • Ko, Chang-hyun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In present study, we suggested the quasi-linear model that linearizes the quadratic drag representing the energy loss across the porous plate. The quasi-linear model was solved by Boundary Element Method (BEM) for development of the porous wave absorber suitable for 2-D wave tank. The drag coefficient at the porous plate was newly obtained through comparison of experimental results. It is found that the porous wave absorber with porosity 0.1, submergence depth d/h = 0.1, and inclined angle $10^{\circ}{\leq}{\theta}{\leq}20^{\circ}$ shows the effective wave absorption. Using the developed quasi-linear numerical model, the optimal design of various types of a porous wave absorber will be applied.

2-D Magnetostatic Field Analysis Using Adaptive Boundary Element Method (적응 경계요소법을 이용한 2차원 정자장 해석)

  • Koh, Chang-Seop;Jeon, Ki-Eock;Hahn, Song-Yop;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.23-27
    • /
    • 1990
  • Adaptive mesh refinement scheme is incorporated with the Boundary Element Method (BEM) in order to get accurate solution with relatively fewer unknowns for the case of magnetostatic field analysis and A new and simple posteriori local error estimation method is presented. The local error is defined as integration over the element of the difference between solutions acquired us ing second order and first order interpolation function and is used as the criterion for mesh refinement at given grid. Case study for two dimensional problems with singular point reveals that meshes are concentrated on the neighbor of singular point and the error is decreased gradually and the solutions calculated on the domain are converged to the analytic solution as the number of unknowns increases. The adaptive mesh gives much better rate of convergence in global errors than the uniform mesh.

  • PDF

Spatial Modulation of Nonlinear Waves and Their Kinematics using a Numerical Wave Tank (수치 파동 수조를 이용한 비선형파의 파형변화와 속도분포 해석)

  • Koo, Weon-Cheol;Choi, Ka-Ram
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.12-16
    • /
    • 2009
  • In this study, the wave profiles and kinematics of highly nonlinear waves at various water depths were calculated using a 2D fully nonlinear Numerical Wave Tank (NWT). The NWT was developed based on the Boundary Element Method (BEM) with the potential theory and the mixed Eulerian-Lagrangian (MEL) time marching scheme by 4th-order Runge-Kutta time integration. The spatial variation of intermediate-depth waves along the direction of wave propagation was caused by the unintended generation of 2nd-order free waves, which were originally investigated both theoretically and experimentally by Goda (1998). These free waves were induced by the mismatch between the linear motion of wave maker and nonlinear displacement of water particles adjacent to the maker. When the 2nd-order wave maker motion was applied, the spatial modulation of the waves caused by the free waves was not observed. The respective magnitudes of the nonlinear wave components for various water depths were compared. It was found that the high-order wave components greatly increase as the water depth decreases. The wave kinematics at various locations were calculated and compared with the linear and the Stokes 2nd-order theories.

Structural Modification for the Reduction of Radiation Noise of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 방사소음 저감을 위한 구조변경)

  • Song, Min-Keun;Oh, Ki-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.439-447
    • /
    • 2008
  • One of the key elements in efforts to minimize noise radiation from a powertrain is the knowledge of the main radiating component and the relation between the surface vibration of a powertrain and the sound pressure. In this research, the powertrain model is developed based on FEM(finite element method). This model is applied to the prediction of the vibration of a powertrain by using ADAMS and the radiation noise by using BEM(boundary element method). According to this numerical analysis, the surface vibration of a powertrain is investigated as a source of radiated noise. This surface vibration is caused by the 1st order natural vibration of the cylinder block and its mode shape is the torsion mode. Therefore, this mode shape is modified to reduce the surface vibration of the powertrain. The radiation noise of the modified powertrain is also reduced to $5{\sim}12\;dB$. This modification is very successful for the noise reduction based on the CAE technology.

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.

Spatial Modulation of Nonlinear Waves due to Bragg Reflection (Bragg 반사에 의한 비선형파의 공간적 파형변조해석)

  • Choi, Ka-Ram;Koo, Weon-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.34-40
    • /
    • 2010
  • Bragg reflection of nonlinear waves is simulated by a 2D fully nonlinear numerical wave tank (NWT). The developed NWT was based on the Boundary Element Method (BEM) with potential theory and the mixed Eulerian-Lagrangian (MEL) time marching scheme with Runge-Kutta 4th-order time integration. A spatial variation of wave elevations and their Fourier amplitudes of each component are compared to investigate the effect of sea bottom ripples and their relative heights. The incident waves over an undulated sea bottom are partially reflected and changed to partial standing waves due to Bragg reflection. The present results are verified with linear calculations and experimental data. It is found that the 1st-order wave component is mainly affected by Bragg reflection and its spatial modulation is significant in front of the bottom ripples.

Modeling the Influence of Gas Pressure on Droplet Impact Using a Coupled Gas/liquid Boundary Element Method

  • Park, Hong-Bok;Yoon, Sam S.;Jepsen Richard A.;Heister Stephen D.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • An inviscid axisymmetric model capable of predicting droplet bouncing and the detailed pre-impact motion, influenced by the ambient pressure, has been developed using boundary element method (BEM). Because most droplet impact simulations of previous studies assumed that a droplet was already in contact with the impacting substrate at the simulation start, the previous simulations could not accurately describe the effect of the gas compressed between a failing droplet and the impacting substrate. To properly account for the surrounding gas effect, an effect is made to release a droplet from a certain height. High gas pressures are computationally observed in the region between the droplet and the impact surface at instances just prior to impact. The current simulation shows that the droplet retains its spherical shape when the surface tension energy is dominant over the dissipative energy. When increasing the Weber number, the droplet surface structure is highly deformed due to the appearance of the capillary waves and, consequently, a pyramidal surface structure is formed; this phenomenon was verified with our experiment. Parametric studies using our model include the pre-impact behavior which varies as a function of the Weber number and the surrounding gas pressure.

  • PDF