• 제목/요약/키워드: D Euler

검색결과 198건 처리시간 0.02초

관출구로부터 방출하는 펄스파에 대한 수치계산과 해석적 연구 (Computational and Analytical Studies on the Impulse Wave Discharged from the Exit of a Pipe)

  • 이동훈;김현섭;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.432-437
    • /
    • 2001
  • A computational work of the impulse wave which is discharged from the open end of a pipe is compared to the Lighthill's aeroacoustics theory. The second-order total variation diminishing(TVD) scheme is employed to solve the axisymmetric, compressible, unsteady Euler equations. The relationship between the initial compressure wave form and the resulting impulse wave is characterized in terms of the peak pressure. The overpressure, pressure gradient and wavelength of the initial compression wave are changed to investigate the influence of the initial compressure wave form on the peak pressure of impulse wave. The results obtained show that for the initial compression wave of a large wavelength and small pressure gradient the peak pressure of the impulse wave depends upon the wavelength and pressure gradient of compression wave, but for the initial compression wave of a short wavelength and large pressure gradient the peak pressure of the impulse wave is almost constant regardless of the wavelength and pressure gradient of compression wave. The peak pressure of the impulse wave is increased with an increase in the overpressure of the initial compression wave. The results from the numerical analysis are well compared to the results from the aeroacoutics theory with a good agreement.

  • PDF

축소/확대관 출구로부터 방출되는 펄스파에 관한 연구 (A Study on the Impulse Waves Discharged from the Exit of the Convergent/Divergent Pipes)

  • 이동훈;주경민;김현섭;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.640-645
    • /
    • 2001
  • The present study is to investigate the characteristics of the impulse waves discharged from the exit of the convergent and divergent pipes. An experiment is carried out using a shock tube with an open end and is compared to the computation of the axisymmetric, compressible, unsteady Euler equations, which are solved by the second-order total variation diminishing(TVD) scheme. For the computational work, some initial compression waves are assumed inside the pipe so that those are identical to the experimental ones of the shock tube. The results show that the peak pressures of the impulse waves discharged from the exit of convergent and divergent pipes decrease with an increase in the wavelength of the initial compression wave. All of the impulse waves have a strong directivity toward the pipe axis, regardless of the exit type of the pipe employed. The impulse waves discharged from the divergent pipe are stronger than those from the straight pipe, while the impulse waves of the convergent pipe are weaker than those from the straight pipe. It is believed that the convergent pipe can playa role of a passive control to reduce the peak pressure of the impulse wave. The present computations represent the experimented impulse waves with a good accuracy.

  • PDF

B-Rep 솔리드모델을 이용한 머시닝 센터용 CAC/CAM 시스템 개발(1): 반모서리 자료구조의 B-Rep 솔리드모델러에 관한 연구 (Development of Smart CAD/CAM System for Machining Center Based on B-Rep Solid Modeling Techniques (I) (A Study on the B-Rep Solid Modeler using Half Edge Data Structure))

  • 양희구;김석일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.689-694
    • /
    • 1994
  • In this paper, to develop a smart CAD/CAM system for systematically performing from the 3-D solid shape design of products to the CNC cutting operation of products by a machining center, a B-Rep solid modeler is realized based on the half edge data structure. Because the B-Rep solid modeler has the various capabilities related to the solid definition functions such as the creation operation of primitives and the translational and rotational sweep operation, the solid manipulation functions such as the split operation and the Boolean set operation, and the solid inversion function for effectively using the data structure, the 3-D solid shape of products can be easily designed and constructed. Also, besides the automatic generation of CNC code, the B-Rep solid modeler can be used as a powerful tool for realizing the automatic generation of finite elements, the interference check between solids, the structural design of machine tools and robots and so on.

  • PDF

A Parametric Study of Ridge-cut Explosive Bolts using Hydrocodes

  • Lee, Juho;Han, Jae-Hung;Lee, YeungJo;Lee, Hyoungjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.50-63
    • /
    • 2015
  • Explosive bolts are one of pyrotechnic release devices, which are highly reliable and efficient for a built-in release. Among them, ridge-cut explosive bolts which utilize shock wave generated by detonation to separate bolt body produce minimal fragments, little swelling and clean breaks. In this study, separation phenomena of ridge-cut explosive bolts or ridge-cut mechanism are computationally analyzed using Hydrocodes. To analyze separation mechanism of ridge-cut explosive bolts, fluid-structure interactions with complex material modeling are essential. For modeling of high explosives (RDX and PETN), Euler elements with Jones-Wilkins-Lee E.O.S. are utilized. For Lagrange elements of bolt body structures, shock E.O.S., Johnson-Cook strength model, and principal stress failure criteria are used. From the computational analysis of the author's explosive bolt model, computational analysis framework is verified and perfected with tuned failure criteria. Practical design improvements are also suggested based on a parametric study. Some design parameters, such as explosive weights, ridge angle, and ridge position, are chosen that might affect the separation reliability; and analysis is carried out for several designs. The results of this study provide useful information to avoid unnecessary separation experiments related with design parameters.

Helmholtz 공명기 내부를 전파하는 비정상 충격파의 수치해석 (Numerical Simulations of an Unsteady Shock Wave Propagating into a Helmholtz Resonator)

  • 이영기;권용훈;신현동;김희동;청목준지
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1643-1648
    • /
    • 2004
  • When a shock wave propagates into a Helmholtz resonator, very complicated wave phenomena are formed both inside and outside the resonator tube. Shock wave reflection, shock focusing phenomena and shock-vortex interactions cause strong pressure fluctuations inside the resonator, consequently leading to powerful sound emission. In the present study, the wave phenomena inside and outside the Helmholtz resonator are, in detail, investigated with a help of CFD. The Mach number of the incident shock wave is varied below 2.0 and several types of resonators are tested to investigate the influence of resonator geometry on the wave phenomena. A TVD scheme is employed to solve the axisymmetric, compressible, Euler equations. The results obtained show that the configuration of the Helmholtz resonator significantly affects the peak pressure of shock wave focusing, its location, the amplitude of the discharged wave and resonance frequency.

  • PDF

Design and Analysis of a Controlled Diffusion Aerofoil Section for an Axial Compressor Stator and Effect of Incidence Angle and Mach No. on Performance of CDA

  • Salunke, Nilesh P.;Channiwala, S.A.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권1호
    • /
    • pp.20-28
    • /
    • 2010
  • This paper deals with the Design and Analysis of a Controlled Diffusion Aerofoil (CDA) Blade Section for an Axial Compressor Stator and Effect of incidence angle and Mach No. on Performance of CDA. CD blade section has been designed at Axial Flow Compressor Research Lab, Propulsion Division of National Aerospace Laboratories (NAL), Bangalore, as per geometric procedure specified in the U.S. patent (4). The CFD analysis has been performed by a 2-D Euler code (Denton's code), which gives surface Mach No. distribution on the profiles. Boundary layer computations were performed by a 2-D boundary layer code (NALSOF0801) available in the SOFFTS library of NAL. The effect of variation of Mach no. was performed using fluent. The surface Mach no. distribution on the CD profile clearly indicates lower peak Mach no. than MCA profile. Further, boundary layer parameters on CD aerofoil at respective incidences have lower values than corresponding MCA blade profile. Total pressure loss on CD aerofoil for the same incidence range is lower than MCA blade profile.

관의 경사출구로부터 방출되는 펄스파의 전파특성 (Propagation Characteristics of the Impulse Wave Discharged from the Inclined Exit of a Pipe)

  • 이동훈;이명호;권용훈;김희동
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.943-949
    • /
    • 2002
  • The propagation of the impulse wave discharged from the Inclined exit of a pipe is investigated through shock tube experiment and numerical computations. The pressure histories and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are analyzed for the range of the incident shock wave Mach number between 1.1 and 1.4. In the shock tube experiments, the impulse waves are visualized by a Schlieren optical system for the purpose of validation of computational work. Computations using the two-dimensional. unsteady, compressible, Euler equations are carried out to represent the experimented impulse waves. Computed Schlieren images predict the experimented impulse waves with a good accuracy. The results obtained show that for the radial direction the peak pressure of the impulse wave discharged depends upon the Inclined angle of the exit of the pipe. but for the axial direction it is almost constant regardless of the inclined angle of the pipe exit.

캔틸레버보의 형상비에 따른 1차원 보와 2차원 평면응력 유한요소해석 결과의 비교 (Comparison between Numerical Results of 1D Beam and 2D Plane Stress Finite Element Analyses Considering Aspect Ratio of Cantilever Beams)

  • 강유진;심지수;조해성;신상준
    • 한국전산구조공학회논문집
    • /
    • 제28권5호
    • /
    • pp.459-465
    • /
    • 2015
  • 항공기는 목적에 따라서 민간 항공기, 무인항공기, 전투기, 헬리콥터 등 다양한 항공기가 존재한다. 이 각각의 항공기는 특정한 목적에 맞게 형상 및 설계가 된다. 특히 항공기 개발과정에서 중요한 해석과정 중 하나가 구조해석이다. 하지만 항공기 구조가 복잡해지고 3차원 모델로 구조해석을 하게 되면 시간과 비용이 크게 증가하게 된다. 따라서 해석 효율성을 위해서 1차원 등가 보나 2차원 평면 응력 조건을 이용하여 실제 구조를 보다 간단하게 모델링한다. 하지만 이런 모델링은 실제 구조와 차이가 있으므로 실제 구조를 잘 반영할 수 있는 적절한 모델링이 필요하다. 따라서 구조형태에 따라서 1차원 등가 보와 2차원 평면응력 조건을 적절하게 선택하여야 한다. 본 논문에서는 EDISON에 업로드 된 구조해석 프로그램을 이용하여 1차원 구조해석과 2차원 구조해석을 검증하고 구조형태에 따라서 1차원 해석과 2차원 해석을 각각 3차원 MSC NASTRAN 구조해석과 비교하여 적절한 해석방법을 찾고자 한다. 비교결과 길이 대 높이 비가 증가할수록 1차원 해석과 3차원 해석의 오차가 급격히 줄어들었으며 이 비율이 18보다 증가하였을 때는 1차원 해석이 2차원 해석보다 3차원 해석의 결과와 일치하였다.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

신경망 학습알고리즘의 비교와 2차원 익형의 비정상 공력하중 예측기법에 관한 연구 (Study of Neural Network Training Algorithm Comparison and Prediction of Unsteady Aerodynamic Forces of 2D Airfoil)

  • 강승온;전상욱;박경현;전용희;이동호
    • 한국항공우주학회지
    • /
    • 제37권5호
    • /
    • pp.425-432
    • /
    • 2009
  • 본 연구에서는 오일러 CFD코드에서 얻은 데이터를 이용하여 2차원 익형의 비정상 공력하중을 모델링하고 예측할 수 있는 신경망의 능력을 확인하였다. 신경망 모델은 감독자 관리 학습을 기반으로 하여 르벤버그-마쿼트 알고리즘, 그리고 여기에 유전알고리즘을 결합시킨 혼합형 유전알고리즘을 사용하여 구성하고 각 경우에 대하여 그 효율성을 비교 분석하였다. 복잡한 시스템을 모사하는 신경망을 학습시키는 데는 혼합형유전알고리즘이 더 효율적이라는 것을 보였으며 신경망모델에 의한 2차원 익형의 비정상공력하중 예측결과 실제 수치결과와 비교적 정확하게 일치하여 신경망 모델이 축소모델로서의 기능을 발휘하는 것을 입증하였다.