• 제목/요약/키워드: D[X]${_N}_*$

검색결과 1,367건 처리시간 0.024초

A tightness theorem for product partial sum processes indexed by sets

  • Hong, Dug-Hun;Kwon, Joong-Sung
    • Journal of the Korean Mathematical Society
    • /
    • 제32권1호
    • /
    • pp.141-149
    • /
    • 1995
  • Let N denote the set of positive integers. Fix $d_1, d_2 \in N with d = d_1 + d_2$. Let X and Y be real random variables and let ${X_i : i \in N^d_1} and {Y_j : j \in N^d_2}$ be independent families of independent identically distributed random variables with $L(X) = L(X_i) and L(Y) = L(Y_j)$, where $L(\cdot)$ denote the law of $\cdot$.

  • PDF

REMARKS ON FINITE FIELDS III

  • Kang, Shinwon
    • Bulletin of the Korean Mathematical Society
    • /
    • 제23권2호
    • /
    • pp.103-111
    • /
    • 1986
  • In [2] and [3], the Shinwon polynomial S$_{n}$(x) of order n is defined and studied in some details. In this paper we will define the general Shinwon polynomial S$_{n}$(a,x) and the Dickson polynomial D$_{n}$(a,x) of the second kind of order n which is a slightly changed form of the Dickson polynomial g$_{n}$(a,x), and show that D$_{n}$(a,x) is closely related to S$_{n}$(a,x).EX> n/(a,x).

  • PDF

Characterizations of Lie Triple Higher Derivations of Triangular Algebras by Local Actions

  • Ashraf, Mohammad;Akhtar, Mohd Shuaib;Jabeen, Aisha
    • Kyungpook Mathematical Journal
    • /
    • 제60권4호
    • /
    • pp.683-710
    • /
    • 2020
  • Let ℕ be the set of nonnegative integers and 𝕬 be a 2-torsion free triangular algebra over a commutative ring ℛ. In the present paper, under some lenient assumptions on 𝕬, it is proved that if Δ = {𝛿n}n∈ℕ is a sequence of ℛ-linear mappings 𝛿n : 𝕬 → 𝕬 satisfying ${\delta}_n([[x,\;y],\;z])\;=\;\displaystyle\sum_{i+j+k=n}\;[[{\delta}_i(x),\;{\delta}_j(y)],\;{\delta}_k(z)]$ for all x, y, z ∈ 𝕬 with xy = 0 (resp. xy = p, where p is a nontrivial idempotent of 𝕬), then for each n ∈ ℕ, 𝛿n = dn + 𝜏n; where dn : 𝕬 → 𝕬 is ℛ-linear mapping satisfying $d_n(xy)\;=\;\displaystyle\sum_{i+j=n}\;d_i(x)d_j(y)$ for all x, y ∈ 𝕬, i.e. 𝒟 = {dn}n∈ℕ is a higher derivation on 𝕬 and 𝜏n : 𝕬 → Z(𝕬) (where Z(𝕬) is the center of 𝕬) is an ℛ-linear map vanishing at every second commutator [[x, y], z] with xy = 0 (resp. xy = p).

UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • 제52권2호
    • /
    • pp.525-530
    • /
    • 2015
  • Let D be an integrally closed domain with quotient field K, X be an indeterminate over D, $f=a_0+a_1X+{\cdots}+a_nX^n{\in}D[X]$ be irreducible in K[X], and $Q_f=fK[X]{\cap}D[X]$. In this paper, we show that $Q_f$ is a maximal ideal of D[X] if and only if $(\frac{a_1}{a_0},{\cdots},\frac{a_n}{a_0}){\subseteq}P$ for all nonzero prime ideals P of D; in this case, $Q_f=\frac{1}{a_0}fD[X]$. As a corollary, we have that if D is a Krull domain, then D has infinitely many height-one prime ideals if and only if each maximal ideal of D[X] has height ${\geq}2$.

A SELF-NORMALIZED LIL FOR CONDITIONALLY TRIMMED SUMS AND CONDITIONALLY CENSORED SUMS

  • Pang Tian Xiao;Lin Zheng Yan
    • Journal of the Korean Mathematical Society
    • /
    • 제43권4호
    • /
    • pp.859-869
    • /
    • 2006
  • Let {$X,\;X_n;n\;{\geq}\;1$} be a sequence of ${\imath}.{\imath}.d.$ random variables which belong to the attraction of the normal law, and $X^{(1)}_n,...,X^{(n)}_n$ be an arrangement of $X_1,...,X_n$ in decreasing order of magnitude, i.e., $\|X^{(1)}_n\|{\geq}{\cdots}{\geq}\|X^{(n)}_n\|$. Suppose that {${\gamma}_n$} is a sequence of constants satisfying some mild conditions and d'($t_{nk}$) is an appropriate truncation level, where $n_k=[{\beta}^k]\;and\;{\beta}$ is any constant larger than one. Then we show that the conditionally trimmed sums obeys the self-normalized law of the iterated logarithm (LIL). Moreover, the self-normalized LIL for conditionally censored sums is also discussed.

THE KRONECKER FUNCTION RING OF THE RING D[X]N*

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • 제47권5호
    • /
    • pp.907-913
    • /
    • 2010
  • Let D be an integrally closed domain with quotient field K, * be a star operation on D, X, Y be indeterminates over D, $N_*\;=\;\{f\;{\in}\;D[X]|\;(c_D(f))^*\;=\;D\}$ and $R\;=\;D[X]_{N_*}$. Let b be the b-operation on R, and let $*_c$ be the star operation on D defined by $I^{*_c}\;=\;(ID[X]_{N_*})^b\;{\cap}\;K$. Finally, let Kr(R, b) (resp., Kr(D, $*_c$)) be the Kronecker function ring of R (resp., D) with respect to Y (resp., X, Y). In this paper, we show that Kr(R, b) $\subseteq$ Kr(D, $*_c$) and Kr(R, b) is a kfr with respect to K(Y) and X in the notion of [2]. We also prove that Kr(R, b) = Kr(D, $*_c$) if and only if D is a $P{\ast}MD$. As a corollary, we have that if D is not a $P{\ast}MD$, then Kr(R, b) is an example of a kfr with respect to K(Y) and X but not a Kronecker function ring with respect to K(Y) and X.

SOME PROPERTIES OF $D^n$-GROUPS

  • Kim, In-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 1989
  • In 1980 and 1983, it was proved that P $D^{2}$-groups are surface groups ([2], [3]). Since then, topologists have been positively studying about P $D^{n}$ -groups (or $D^{n}$ -groups). For example, let a topological space X have a right .pi.-action, where .pi. is a multiplicative group. If each x.memX has an open neighborhood U such that for each u.mem..pi., u.neq.1, U.cap. $U_{u}$ =.phi., this right .pi.-action is said to be proper. In this case, if X/.pi. is compact then (1) .pi.$_{1}$(X/.pi).iden..pi.(X:connected, .pi.$_{1}$: fundamental group) ([4]), (2) if X is a differentiable orientable manifold with demension n and .rho.X (the boundary of X)=.phi. then $H^{k}$ (X;Z).iden. $H_{n-k}$(X;Z), ([6]), where Z is the set of all integers.s.

  • PDF

A X-band 40W AlGaN/GaN Power Amplifier MMIC for Radar Applications (레이더 응용을 위한 X-대역 40W AlGaN/GaN 전력 증폭기 MMIC)

  • Byeong-Ok, Lim;Joo-Seoc, Go;Keun-Kwan, Ryu;Sung-Chan, Kim
    • Journal of IKEEE
    • /
    • 제26권4호
    • /
    • pp.722-727
    • /
    • 2022
  • In this paper, we present the design and characterization of a power amplifier (PA) monolithic microwave integrated circuit (MMIC) in the X-band. The device is designed using a 0.25 ㎛ gate length AlGaN/GaN high electron mobility transistor (HEMT) on SiC process. The developed X-band AlGaN/GaN power amplifier MMIC achieves small signal gain of over 21.6 dB and output power more than 46.11 dBm (40.83 W) in the entire band of 9 GHz to 10 GHz. Its power added efficiency (PAE) is 43.09% ~ 44.47% and the chip dimensions are 3.6 mm × 4.3 mm. The generated output power density is 2.69 W/mm2. It seems that the developed AlGaN/GaN power amplifier MMIC could be applicable to various X-band radar systems operating X-band.

THE RANGE INCLUSION RESULTS FOR ALGEBRAIC NIL DERIVATIONS ON COMMUTATIVE AND NONCOMMUTATIVE ALGEBRAS

  • Toumi, Mohamed Ali
    • The Pure and Applied Mathematics
    • /
    • 제20권4호
    • /
    • pp.243-249
    • /
    • 2013
  • Let A be an algebra and D a derivation of A. Then D is called algebraic nil if for any $x{\in}A$ there is a positive integer n = n(x) such that $D^{n(x)}(P(x))=0$, for all $P{\in}\mathbb{C}[X]$ (by convention $D^{n(x)}({\alpha})=0$, for all ${\alpha}{\in}\mathbb{C}$). In this paper, we show that any algebraic nil derivation (possibly unbounded) on a commutative complex algebra A maps into N(A), where N(A) denotes the set of all nilpotent elements of A. As an application, we deduce that any nilpotent derivation on a commutative complex algebra A maps into N(A), Finally, we deduce two noncommutative versions of algebraic nil derivations inclusion range.

NUMERICAL METHODS FOR SOME NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

  • El-Borai, Mahmoud M.;El-Nadi, Khairia El-Said;Mostafa, Osama L.;Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권1호
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper we study the numerical solutions of the stochastic differential equations of the form $$du(x,\;t)=f(x,\;t,\;u)dt\;+\;g(x,\;t,\;u)dW(t)\;+\;\sum\limits_{|q|\leq2m}\;A_q(x,\;t)D^qu(x,\;t)dt$$ where $0\;{\leq}\;t\;{\leq}\;T,\;x\;{\in}\;R^{\nu}$, ($R^{nu}$ is the $\nu$-dimensional Euclidean space). Here $u\;{\in}\;R^n$, W(t) is an n-dimensional Brownian motion, $$f\;:\;R^{n+\nu+1}\;{\rightarrow}\;R^n,\;g\;:\;R^{n+\nu+1}\;{\rightarrow}\;R^{n{\times}n},$$, and $$A_q\;:\;R^{\nu}\;{\times}\;[0,\;T]\;{\rightarrow}\;R^{n{\times}n}$$ where ($A_q,\;|\;q\;|{\leq}\;2m$) is a family of square matrices whose elements are sufficiently smooth functions on $R^{\nu}\;{\times}\;[0,\;T]\;and\;D^q\;=\;D^{q_1}_1_{\ldots}_{\ldots}D^{q_{\nu}}_{\nu},\;D_i\;=\;{\frac{\partial}{\partial_{x_i}}}$.

  • PDF