• Title/Summary/Keyword: D/d ratio

Search Result 9,650, Processing Time 0.052 seconds

Tuber Enlargement and Chemical Components of Yams (Dioscorea opposita Thunb.) (둥근마·단마의 괴경비대 및 성분특성)

  • Chang, Kwang Jin;Park, Byoung Jae;Park, Jong In;Park, Ju Hyun;Kim, Sun Lim;Park, Cheol Ho
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.50-62
    • /
    • 2004
  • Tuber yield and content of general component and diosgenin which is a main bioactive property were investigated in order to determine the growth characteristics of round typed yam(Dioscorea opposita L.) and the potential of artificial culture at Suwon, Korea. Tubers of round yam was initiated to form at 60 days after planting and then enlargement of tubers lasted by 160 days after planting. Compared to short typed yam(108g), tuber weight of round yam was higher(127g) on the basis of dry weight at 200 days after planting. In comparison of general component between round yam and short yam, protein of round yam(3.62%) was higher than short yam(2.10%). Water content in round yam(64.5%) was lower in short yam(79.4%), indicating a higher dry weight ratio of round yam. Hardness of round yam was 2787.6 while short yam showed about two times higher hardness(4946.9). Lightness was higher in round yam(77.4). In tuber extracts analysis, diosgenin content was respectively 3.32% in round yam and 2.61% in short yam.

Effect of GA3 Treatment on the Flowering in Tuber of Zantedeschia 'Black Magic' (GA3 처리가 유색칼라 괴경의 개화에 미치는 영향)

  • Park, Nou-Bog;Lim, Hoe-Chun
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.7 no.1
    • /
    • pp.90-96
    • /
    • 2005
  • Tubers(4-5cm diameter) of Zantedeschia 'Black Magic' were used to study the induction of flowering in GA3 soaking times and concentration. The GA3 soaking were 10 seconds and 30 minutes at the GA3 concentrations of 50, 100, 250, and 500 mg·L1. The time to emergence in GA3 treatment were 1.1~4.0 days shorter than control Growth characteristics were good in GA3 treatment but that was no significance in GA3 soaking time and concentration. When GA3 soaking time and concentration were increased, days to flowering was shorter, but flower stalk length, flower stalk width, flower length, flower width were no difference. The number of flower per tuber was most as 4.0~4.3 in 250~500 mg·L1 GA3 concentration and that was about 2 times compared to control. The normal flower ratio and bulb enlargement were similar compared with GA3 soaking time and concentration. GA3 250~500 mg·L1 treatment is necessary for improvement of number of flowers per bulb.

Analysis and Evaluation of CPC / COLSS Related Test Result During YGN 3 Initial Startup (영광 3호기 초기 시운전 동안 CPC / COLSS 관련시험 결과 분석 및 평가)

  • Chi, S.G.;Yu, S.S.;In, W.K.;Auh, G.S.;Doo, J.Y.;Kim, D.K.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.877-887
    • /
    • 1995
  • YGN 3 is the first nuclear power plant to use the Core Protection Calculator (CPC) as the core protection system and the Core Operating Limit Supervisory System (COLSS) as the core monitor-ing system in Korea. The CPC is designed to provide on-line calculations of Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD) and to initiate reactor trip if the core conditions exceed the DNBR or LPD design limit. The COLSS is designed to assist the operator in implementing the Limiting Conditions for Operation (LCOs) in Technical Specifications for DNBR/Linear Heat Rate (LHR) margin, azimuthal tilt, and axial shape index and to provide alarm when the LCOs are reached. During YGN 3 initial startup testing, extensive CPC/COLSS related tests ore peformed to ver-ify the CPC/COLSS performance and to obtain optimum CPC/COLSS calibration constants at var, -ious core conditions. Most of test results met their specific acceptance criteria. In the case of missing the acceptance criteria, the test results ore analyzed, evaluated, and justified. Through the analysis and evaluation of each of the CPC/COLSS related test results, it can be concluded that the CPC/COLSS are successfully Implemented as designed at YGN 3.

  • PDF

Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection

  • Shuaibing Shi;Hefan Dong;Xiaoyou Chen;Siqi Xu;Yue Song;Meiting Li;Zhiling Yan ;Xiaoli Wang ;Mingfu Niu ;Min Zhang;Chengshui Liao
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.44.1-44.17
    • /
    • 2023
  • Background: Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. Objective: This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. Methods: Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. Results: The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). Conclusions: Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Firefighting and Cancer: A Meta-analysis of Cohort Studies in the Context of Cancer Hazard Identification

  • Nathan L. DeBono;Robert D. Daniels ;Laura E. Beane Freeman ;Judith M. Graber ;Johnni Hansen ;Lauren R. Teras ;Tim Driscoll ;Kristina Kjaerheim;Paul A. Demers ;Deborah C. Glass;David Kriebel;Tracy L. Kirkham;Roland Wedekind;Adalberto M. Filho;Leslie Stayner ;Mary K. Schubauer-Berigan
    • Safety and Health at Work
    • /
    • v.14 no.2
    • /
    • pp.141-152
    • /
    • 2023
  • Objective: We performed a meta-analysis of epidemiological results for the association between occupational exposure as a firefighter and cancer as part of the broader evidence synthesis work of the IARC Monographs program. Methods: A systematic literature search was conducted to identify cohort studies of firefighters followed for cancer incidence and mortality. Studies were evaluated for the influence of key biases on results. Random-effects meta-analysis models were used to estimate the association between ever-employment and duration of employment as a firefighter and risk of 12 selected cancers. The impact of bias was explored in sensitivity analyses. Results: Among the 16 included cancer incidence studies, the estimated meta-rate ratio, 95% confidence interval (CI), and heterogeneity statistic (I2) for ever-employment as a career firefighter compared mostly to general populations were 1.58 (1.14-2.20, 8%) for mesothelioma, 1.16 (1.08-1.26, 0%) for bladder cancer, 1.21 (1.12-1.32, 81%) for prostate cancer, 1.37 (1.03-1.82, 56%) for testicular cancer, 1.19 (1.07-1.32, 37%) for colon cancer, 1.36 (1.15-1.62, 83%) for melanoma, 1.12 (1.01-1.25, 0%) for non-Hodgkin lymphoma, 1.28 (1.02-1.61, 40%) for thyroid cancer, and 1.09 (0.92-1.29, 55%) for kidney cancer. Ever-employment as a firefighter was not positively associated with lung, nervous system, or stomach cancer. Results for mesothelioma and bladder cancer exhibited low heterogeneity and were largely robust across sensitivity analyses. Conclusions: There is epidemiological evidence to support a causal relationship between occupational exposure as a firefighter and certain cancers. Challenges persist in the body of evidence related to the quality of exposure assessment, confounding, and medical surveillance bias.

Review of Thermodynamic Sorption Model for Radionuclides on Bentonite Clay (벤토나이트와 방사성 핵종의 열역학적 수착 모델 연구)

  • Jeonghwan Hwang;Jung-Woo Kim;Weon Shik Han;Won Woo Yoon;Jiyong Lee;Seonggyu Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.515-532
    • /
    • 2023
  • Bentonite, predominantly consists of expandable clay minerals, is considered to be the suitable buffering material in high-level radioactive waste disposal repository due to its large swelling property and low permeability. Additionally, the bentonite has large cation exchange capacity and specific surface area, and thus, it effectively retards the transport of leaked radionuclides to surrounding environments. This study aims to review the thermodynamic sorption models for four radionuclides (U, Am, Se, and Eu) and eight bentonites. Then, the thermodynamic sorption models and optimized sorption parameters were precisely analyzed by considering the experimental conditions in previous study. Here, the optimized sorption parameters showed that thermodynamic sorption models were related to experimental conditions such as types and concentrations of radionuclides, ionic strength, major competing cation, temperature, solid-to-liquid ratio, carbonate species, and mineralogical properties of bentonite. These results implied that the thermodynamic sorption models suggested by the optimization at specific experimental conditions had large uncertainty for application to various environmental conditions.

A Green View Index Improvement Program for Urban Roads Using a Green Infrastructure Theory - Focused on Chengdu City, Sichuan Province, China - (그린인프라스트럭처 개념을 적용한 가로 녹시율 개선 방안 - 중국 쓰촨성(四川省) 청두시(成都市)을 중심으로 -)

  • Hou, ShuJun;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.61-74
    • /
    • 2023
  • The concept of "green infrastructure" emphasizes the close relationship between natural and urban social systems, thereby providing services that protect the ecological environment and improve the quality of human life. The Green View Index(GVI) is an important indicator for measuring the supply of urban green space and contains more 3D spatial elements concerning the green space ratio. This study focused on an area within the Third Ring Road in the city of Chengdu, Sichuan Province, China. The purposes of this study were three-fold. First, this study analyzed the spatial distribution characteristics of the GVI in urban streets and its correlation with the urban park green space system using Street View image data. Second to analyze the characteristics of low GVI streets were analyzed. Third, to analyze the connectivity between road traffic and street GVI using space syntax were analyzed. This study found that the Street GVI was higher in the southwestern part of the study area than in the northeastern part. The spatial distribution of the street GVI correlated with urban park green space. Second, the street areas with low GVI are mainly concentrated in areas with dense commercial facilities, areas with new construction, areas around elevated roads, roads below Class 4, and crossroads areas. Third, the high integration and low GVI areas were mainly concentrated within the First Ring Road in the city as judged by the concentration of vehicles and population. This study provides base material for future programs to improve the GVI of streets in Chengdu, Sichuan Province.

Effect of Light Receiving rate on Growth and Quality of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.62-62
    • /
    • 2020
  • Ginseng is a shade-plant cultivated using shading facilities. However, at too low light levels, root growth is poor, and at high light levels, the destruction of chlorophyll reduces the photosynthesis efficiency due to leaf burn and early fall leaves. The ginseng has a lightsaturation point of 12,000~15,000 lux when grown at 15 to 20℃ and 9,500 lux at 25℃. This study was conducted to select the optimal light intensity of 3-year-old ginseng grown in blue-white film plastic house. The seeds were planted in the blue-white film plastic house with different light receiving rate (March 17, 2020). Between April and September, the average air temperature in the house was 20.4-20.7℃. Average soil temperature was 18.3℃-18.5℃. The chemical properties of the test soil was as follows. The pH level was 7.0-7.4, EC was 0.5-0.6 dS/m, OM was at the levels of 33.6-37.7 g/kg, P2O5 was 513.0-590.8 mg/kg, slightly higher than the allowable 400 mg/kg. The amount of light intensity, illuminance, and solar radiation in the blue-white film house was increased as the light-receiving rate increased and the amount of light intensity was found to be 9-14% compared to the open field, 8-13% illuminance and 9-14% solar irradiation respectively. The photosynthesis rate was the lowest at 3.1 µmolCO2/m2/s in the 9% light blue-white plastic house and 4.2 and 4.0 µmolCO2/m2/s in the 12% and 14% light blue-white plastic house, respectively. These results generally indicate that the photosynthesis of plants increases with the amount of light, but the ginseng has a lower light saturation point at high temperatures, and the higher the amount of light, the lower the photosynthetic efficiency. The SPAD (chlorophyll content) value decreased as the increase of light-receiving rate, and was the highest at 32.7 in 9% light blue-white plastic house. Ginseng germination started on April 11 and took 13-15 days to germinate. The overall germination rate was 82.9-85.8%. The plant height and length of stem were long in the 9% light-receiving plastic house. The diameter of stem was thick in the 12-14% light-receiving plastic house. In the 12% and 14% light-receiving plastic house, the length and diameter of taproot was long and thick, so the fresh weight of root per plant was 20 g or more, which was heavier than 16.9 g of the 9% light-receiving plastic house. The disease incidence (Alternaria blight, Gray mold and Damping-off etc.) rate were 0.9-2.7%. The incidence of Sclerotinia rot disease was 7.5-8.4%, and root rot was 0-20.0%. The incidence ratio of rusty root ginseng was 34.4-38.7% level, which was an increase from the previous year's 15% level.

  • PDF

Analysis of Flood Level Changes by Creating Nature-based Flood Buffering Section (자연성기반 홍수완충공간 조성에 따른 홍수위 변화 분석)

  • Ryu, Jiwon;Ji, Un;Kim, Sanghyeok;Jang, Eun-kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.735-747
    • /
    • 2023
  • In recent times, the sharp increase in extreme flood damages due to climate change has posed a challenge to effectively address flood-related issues solely relying on conventional flood management infrastructure. In response to this problem, this study aims to consider the effectiveness of nature-based flood management approaches, specifically levee retreat and relocation. To achieve this, we utilized a 1D numerical model, HEC-RAS, to analyze the flood reduction effects concerning floodwater levels, flow velocities, and time-dependent responses to a 100-year frequency flood event. The analysis results revealed that the effect of creating a flood buffer zone of the nature-based solution extends from upstream to downstream, reducing flood water levels by up to 30 cm. The selection of the flow roughness coefficient in consideration of the nature-based flood buffer space creation characteristics should be based on precise criteria and scientific evidence because it is sensitive to the flood control effect analysis results. Notably, floodwater levels increased in some expanded floodplain sections, and the reduction in flow velocities varied depending on the ratio of the expanded cross-sectional area. In conclusion, levee retreat and floodplain expansion are viable nature-based alternatives for effective flood management. However, a comprehensive design approach is essential considering flood control effects, flow velocity reduction, and the timing of peak water levels. This study offers insights into addressing the challenges of climate-induced extreme flooding and advancing flood management strategies.