• Title/Summary/Keyword: Cytotoxic protein

Search Result 464, Processing Time 0.024 seconds

Anti-oxidative and Anti-cancer Activities by Cell Cycle Regulation of Salsola collina Extract (솔장다리 추출물의 항산화 활성 및 세포주기조절에 의한 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Park, Hyun-Jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • Salsola collina, also known as Russian thistle, is widely distributed in and around waste facilities, roadsides, and drought and semi-drought areas, and is used as a traditional folk remedy in Chinese medicine for the treatment of hypertension. In this study, we have evaluated the anti-oxidative and anti-cancer activities of the ethanol extract of S. collina Pall. (EESC), and the molecular mechanisms of its anti-cancer effects on human colon carcinoma HT29 cells. EESC exhibited anti-oxidative activity through DPPH radical scavenging capacity and showed cytotoxic activity in a dose-dependent manner in HT29 cells. After EESC treatment, HT29 cells altered their morphology, becoming smaller and irregular in shape. EESC also induced cell accumulation in the G2/M phase in a dose-dependent manner, accompanied by a decrease of cell population in the G1 phase. The G2/M arrest by EESC was associated with the increased expression of cyclin-dependent kinase (CDK) inhibitor p21 and Wee1 kinase, which phosphorylates, or inactivates, Cdc2. EESC treatment induced the phosphorylation of Cdc2 and Cdc25C, and inhibited cyclin A and Cdc25C protein expression. In addition, S arrest was induced by the highest concentration of EESC treatment, associated with a decrease of cyclin A and Cdk2 expression. These findings suggest that EESC may possess remarkable anti-oxidative activity and exert an anti-cancer effect in HT29 cells by cell cycle regulation.

Evaluation Antioxidant and Anti-inflammatory Activity of Ethanolic Extracts of Myriophyllum spicatum L. in Lipopolysaccharide-stimulated RAW 264.7 Cells (이삭물수세미(Myriophyllum spicatum L.) 에탄올 추출물의 항산화와 항염증 효과)

  • Chul Hwan Kim;Young-Kyung Lee;Min Jin Kim;Ji Su Choi;Buyng Su Hwang;Pyo Yun Cho;Young Jun Kim;Yong Tae Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Myriophyllum spicatum L. has been used as an ornamental in ponds and aquariums, and as a folk remedy for inflammation and pus. Nevertheless, the biological activity and underlying mechanisms of anti-inflammatory effects are unclear. This study is aimed at investigating the antioxidative and anti-inflammatory activities of ethanol extract of Myriophyllum spicatum L. (EMS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Antioxidant activity of EMS was assessed by radical-scavenging effects on ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. As inflammatory response parameters produced by LPS-stimulated RAW 264.7 cells were quantified to assess the anti-inflammatory activity of EMS. Our results showed that EMS increased FRAP and DPPH radical-scavenging activity. In EMS-treated RAW 264.7 cells, the production of NO, PGE2, TNF-α and IL-1β was significantly inhibited at the non-cytotoxic concentration. In addition, EMS significantly attenuated LPS-stimulated the toll-like receptor (TLR) 4/myeloid differentiation protein (MyD) 88 signaling pathway, and inhibited nuclear translocation of nuclear factor-kappa B(NF-κB). Positive correlations were noted between anti-inflammatory activity and antioxidant activity. In conclusion, it was indicated that EMS suppresses the transcription of inflammatory factors by inhibiting the TLR4/MyD88/NF-κB signaling pathway, thereby suppressing LPS-stimulated inflammation in RAW 264.7 cells. This study highlights the potential role of EMS against inflammation and associated diseases.

Protective Effect of Enzymatically Modified Stevia on C2C12 Cell-based Model of Dexamethasone-induced Muscle Atrophy (덱사메타손으로 유도된 근위축 C2C12 모델에서 효소처리스테비아의 보호 효과)

  • Geon Oh;Sun-Il Choi;Xionggao Han;Xiao Men;Se-Jeong Lee;Ji-Hyun Im;Ho-Seong Lee;Hyeong-Dong Jung;Moon Jin La;Min Hee Kwon;Ok-Hwan Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • This study aimed to investigate the protective effect of enzymatically modified stevia (EMS) on C2C12 cell-based model of dexamethasone (DEX)-induced muscle atrophy to provide baseline data for utilizing EMS in functional health products. C2C12 cells with DEX-induced muscle atrophy were treated with EMS (10, 50, and 100 ㎍/mL) for 24 h. C2C12 cells were treated with EMS and DEX to test their effects on cell viability and myotube formation (myotube diameter and fusion index), and analyze the expression of muscle strengthening or degrading protein markers. Schisandra chinensis Extract, a common functional ingredient, was used as a positive control. EMS did not show any cytotoxic effect at all treatment concentrations. Moreover, it exerted protective effects on C2C12 cell-based model of DEX-induced muscle atrophy at all concentrations. In addition, the positive effect of EMS on myotube formation was confirmed based on the measurement and comparison of the fusion index and myotube diameter when compared with myotubes treated with DEX alone. EMS treatment reduced the expression of muscle cell degradation-related proteins Fbx32 and MuRF1, and increased the expression of muscle strengthening and synthesis related proteins SIRT1 and pAkt/Akt. Thus, EMS is a potential ingredient for developing functional health foods and should be further evaluated in preclinical models.

Role of Oxygen Free Radical in the Expression of Interleukin-8 and Interleukin-$1{\beta}$ Gene in Mononuclear Phagocytic Cells (내독소에 의한 말초혈액 단핵구의 IL-8 및 IL-$1{\beta}$ 유전자 발현에서 산소기 역할에 관한 연구)

  • Kang, Min-Jong;Kim, Jae-Yeol;Park, Jae-Seok;Lee, Seung-Joon;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.862-870
    • /
    • 1995
  • Background: Oxygen free radicals have generally been considered as cytotoxic agents. On the other hand, recent results suggest that small nontoxic amounts of these radicals may act a role in intracellular signal transduction pathway and many efforts to reveal the role of these radicals as secondary messengers have been made. It is evident that the oxygen radicals are released by various cell types in response to extracellular stimuli including LPS, TNF, IL-1 and phorbol esters, all of which translocate the transcription factor $NF{\kappa}B$ from cytoplasm to nucleus by releasing an inhibitory protein subunit, $I{\kappa}B$. Activation of $NF{\kappa}B$ is mimicked by exposure to mild oxidant stress, and inhibited by agents that remove oxygen radicals. It means the cytoplasmic form of the inducible tanscription factor $NF{\kappa}B$ might provide a physiologically important target for oxygen radicals. At the same time, it is well known that LPS induces the release of oxygen radicals in neutrophil with the activation of $NF{\kappa}B$. From above facts, we can assume the expression of IL-8 and IL-$1{\beta}$ gene by LPS stimulation may occur through the activation of $NF{\kappa}B$, which is mediated through the release of $I{\kappa}B$ by increasing amounts of oxygen radicals. But definitive evidence is lacking about the role of oxygen free radicals in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. We conducted a study to determine whether oxygen radicals act a role in the expression of IL-8 and IL-$1{\beta}$ gene in mononuclear phagocytic cells. Method: Human peripheral blood monocytes were isolated from healthy volunteers. Time and dose relationship of $H_2O_2$-induced IL-8 and IL-$1{\beta}$ mRNA expression was observed by Northern blot analysis. To evaluate the role of oxygen radicals in the expression of IL-8 and IL-$1{\beta}$ mRNA by LPS stimulation, pretreatment of various antioxiants including PDTC, TMTU, NAC, ME, Desferrioxamine were done and Northern blot analysis for IL-8 and IL-$1{\beta}$ mRNA was performed. Results: In PBMC, dose and time dependent expression of IL-8 and IL-$1{\beta}$ mRNA by exogenous $H_2O_2$ was not observed. But various antioxidants suppressed the expression of LPS-induced IL-8 and IL-$1{\beta}$ mRNA expression of PBMC and the suppressive activity was most prominant when the pretreatment was done with TMTU. Conclusion: Oxygen free radical may have some role in the expression of IL-8 and IL-$1{\beta}$ mRNA of PBMC but that radical might not be $H_2O_2$.

  • PDF