• Title/Summary/Keyword: Cytokine Reporter

Search Result 24, Processing Time 0.022 seconds

NF-${\kappa}B$ Dependent IL-8 Secretion from Lung Epithelial Cells Induced by Peripheral Blood Monocytes Phagocytosing Mycobacterium Tuberculosis (결핵균을 탐석한 말초혈액단핵구 배양상층액에 의해 유도되는 폐상피세포주에서의 NF-${\kappa}B$ 의존성 IL-8 분비기전)

  • Park, Jae-Seuk;Jee, Young-Koo;Choi, Eun-Kyong;Kim, Keun-Youl;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.4
    • /
    • pp.315-324
    • /
    • 2001
  • Background : IL-8 is a potent chemotactic cytokine that plays an important role in the host defense mechanism against M. tuberculosis by recruiting inflammatory cells to the site of the infection. Lung epithelial cells, as well as alveolar macrophages are known to produce IL-8 in response to M. tuberculosis. IL-8 gene expression is mainly regulated on the level of transcription by NF-${\kappa}B$. This study investigated whether or not A549 cells produce IL-8 in NF-${\kappa}B$ dependent mechanism in response to macrophages phagocytosing M. tuberculosis. Methods : Peripheral blood monocytes that were obtained from healthy donors were cultured for 24 h with M. tuberculosis and a conditioned medium(CoMTB) was obtained. As a negative control, the conditioned medium without M. tuberculosis (CoMCont) was used. A549 cells were stimulated with M. tuberculosis, CoMCont and CoMTB and the IL-8 concentration in the culture media was measured by ELISA. The CoMTB induced IL-8 mRNA expression in the A549 cells was evaluated using RT-PCR, and CoMTB induced $I{\kappa}B{\alpha}$ degradation was measured using western blot analysis. CoMTB induced nuclear translocation and DNA binding of NF-${\kappa}B$ was also examined using an electrophoretic mobility shift assay(EMSA), and the CoMTB induced NF-${\kappa}B$ dependent IL-8 transcriptional activity was measured using a luciferase reporter gene assay. Results : CoMTB induced IL-8 production by A549 cells($46.8{\pm}4.8\;ng/ml$) was higher than with direct stimulation with M. tuberculosis ($6.8{\pm}2.9\;ng/ml$). CoMTB induced IL-8 mRNA expression increased after 2 h of stimulation and was sustained for 24 h. $I{\kappa}B{\alpha}$ was degraded after 10 min of CoMTB stimulation and reappeared by 60 min. CoMTB stimulated the nuclear translocation and DNA binding of NF-${\kappa}B$. The CoMTB induced NF-${\kappa}B$ dependent IL-8 transcriptional activity($13.6{\pm}4.3$ times control) was higher than either CoMCont($2.0{\pm}0.6$ times control) or M. tuberculosis ($1.4{\pm}0.6$ times control). Conclusion : A conditioned medium of peripheral blood monocytes phagocytosing M. tuberculosis stimulates NF-${\kappa}B$ dependent IL-8 production by the lung epithelial cells.

  • PDF

Inhibitory Mechanism on NF-${\kappa}B$ Transactivation by Dexamethasone in Pulmonary Epithelial Cells (폐상피세포에서 Dexamethasone에 의한 NF-${\kappa}B$ Transactivation 억제기전에 관한 연구)

  • Lee, Kye-Young;Kim, Yoon-Seop;Ko, Mi-Hye;Park, Jae-Seok;Jee, Young-Koo;Kim, Keun-Youl;Kwak, Sahng-June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.5
    • /
    • pp.682-698
    • /
    • 2000
  • Glucocorticoid receptor (GR) functions as a suppressor of inflammation by inhibiting the expression of many cytokine genes activated by NF-${\kappa}B$. The goal of this study is to investigate the mechanism by which GR repress NF-${\kappa}B$ activation in lung epithelial cells. We used A549 and BEAS-2B lung epithelia! cell lines. Using Ig$G{\kappa}$-NF-${\kappa}B$ luciferase reporter gene construct, we found that dexamethasone significantly suppressed TNF-$\alpha$-induced NF-${\kappa}B$ activation and the overexpression of GR showed dose-dependent reduction of TNF-$\alpha$-induced NF-${\kappa}B$ activity in both cell lines. However, DNA binding of NF-${\kappa}B$ induced by TNF-$\alpha$ in electromobility shift assay was not inhibited by dexamethasone. Super shift assay with anti-p65 antibody demonstrated the existence of p65 in NF-${\kappa}B$ complex induced by $\alpha$ Western blot showed that $I{\kappa}B{\alpha}$ degradation induced by TNF-$\alpha$ was not affected by dexamethasone and $I{\kappa}B{\kappa}$ was not induced by dexamethasone, neither. To evaluate p65 specific transactivation, we adopted co-transfection study of Gal4-p65TA1 or TA2 fusion protein expression system together with 5xGal4-luciferase vector. Co-transfection of GR with Gal4-p65TA1 or TA2 repressed luciferase activity profoundly to the level of 10-20% of p65TA1- or TA2-induced transcriptional activity. And this transrepressional effect was abolished by co-transfection of CBP of SRC-1 expression vectors. These results suggest that GR-mediated transrepression of NF-${\kappa}B$ in lung epithelial cells is through competing for binding to limiting amounts of transcriptional coactivators, CBP or SRC-1.

  • PDF

Suppressive Effects of Defatted Green Tea Seed Ethanol Extract on Cancer Cell Proliferation in HepG2 Cells (HepG2 Cell에서 녹차씨박 에탄올 추출물의 암세포 증식 억제효과)

  • Noh, Kyung-Hee;Min, Kwan-Hee;Seo, Bo-Young;Kim, Hye-Ok;Kim, So-Hee;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.767-774
    • /
    • 2011
  • Defatted green tea seed was extracted with 100% ethanol for 4 hr and then fractionated with petroleum ether, ethyl acetate and butanol. The ethanol and butanol extracts showed greater increases in antiproliferation potential against liver cancer cells than petroleum ether, ethyl acetate, $H_2O$, and hot water extracts did. Thus, this study was carried out to investigate the anti-proliferative actions of defatted green tea seed ethanol extract (DGTSE) in HepG2 cancer cells. The DGTSE contained catechins including EGC ($1039.1{\pm}15.2\;g/g$), tannic acid ($683.5{\pm}17.61\;{\mu}g/g$), EC ($62.4{\pm}5.00\;{\mu}g/g$), ECG ($24.4{\pm}7.81\;{\mu}g/g$), EGCG ($20.9{\pm}0.96\;{\mu}g/g$) and gallic acid ($2.4{\pm}0.68\;{\mu}g/g$), but caffeic acid was not detected when analyzed by HPLC. The anti-proliferation effect of DGTSE toward HepG2 cells was 83.13% when treated at $10\;{\mu}g$/mL, of DGTSE, offering an $IC_{50}$ of $6.58\;{\mu}g$/mL. DGTSE decreased CYP1A1 and CYP1A2 protein expressions in a dose-dependent manner. Quinone reductase and antioxidant response element (ARE)-luciferase activities were increased about 2.6 and 1.94-fold at a concentration of $20\;{\mu}g$/mL compared to a control group, respectively. Enhancement of phase II enzyme activity by DGTSE was shown to be mediated via interaction with ARE sequences in genes encoding the phase enzymes. DGTSE significantly (p<0.05) suppressed prostaglandin $E_2$ level, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) protein expressions, and NF${\kappa}$B translocation, but did not affected nitric oxide production. From the above results, it is concluded that DGTSE may ameliorate tumor and inflammatory reactions through the elevation of phase II enzyme activities and suppression of NF${\kappa}$B translocation and TNF-${\alpha}$ protein expressions, which support the cancer cell anti-proliferative effects of DGTSE in HepG2 cells.

Destabilization of TNF-α mRNA by Rapamycin

  • Park, Jong-Woo;Jeon, Ye-Ji;Lee, Jae-Cheol;Ahn, So-Ra;Ha, Shin-Won;Bang, So-Young;Park, Eun-Kyung;Yi, Sang-Ah;Lee, Min-Gyu;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 2012
  • Stimulation of mast cells through the high affinity IgE receptor (Fc${\varepsilon}$RI) induces degranulation, lipid mediator release, and cytokine secretion leading to allergic reactions. Although various signaling pathways have been characterized to be involved in the Fc${\varepsilon}$RI-mediated responses, little is known about the precious mechanism for the expression of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in mast cells. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), reduces the expression of TNF-${\alpha}$ in rat basophilic leukemia (RBL-2H3) cells. IgE or specific antigen stimulation of RBL-2H3 cells increases the expression of TNF-${\alpha}$ and activates various signaling molecules including S6K1, Akt and p38 MAPK. Rapamycin specifically inhibits antigeninduced TNF-${\alpha}$ mRNA level, while other kinase inhibitors have no effect on TNF-${\alpha}$ mRNA level. These data indicate that mTOR signaling pathway is the main regulation mechanism for antigen-induced TNF-${\alpha}$ expression. TNF-${\alpha}$ mRNA stability analysis using reporter construct containing TNF-${\alpha}$ adenylate/uridylate-rich elements (AREs) shows that rapamycin destabilizes TNF-${\alpha}$ mRNA via regulating the AU-rich element of TNF-${\alpha}$ mRNA. The antigen-induced activation of S6K1 is inhibited by specific kinase inhibitors including mTOR, PI3K, PKC and $Ca^{2+}$chelator inhibitor, while TNF-${\alpha}$ mRNA level is reduced only by rapamycin treatment. These data suggest that the effects of rapamycin on the expression of TNF-${\alpha}$ mRNA are not mediated by S6K1 but regulated by mTOR. Taken together, our results reveal that mTOR signaling pathway is a novel regulation mechanism for antigen-induced TNF-${\alpha}$ expression in RBL-2H3 cells.