• Title/Summary/Keyword: Cytochrome P450scc mRNA

Search Result 3, Processing Time 0.021 seconds

Effects of Bisphenol and Octylphenol on TM3 Cell : Expression of Cytochrome P450scc and Estrogen Receptor $\alpha$ mRNA (Bisphenol과 Octylphenol이 TM3 세포에 미치는 영향: Cytochrome P450scc와 Estrogen Receptor $\alpha$ 유전자의 발현)

  • 이호준;김묘경;강희규;김동훈;한성원;고덕성
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.215-220
    • /
    • 2000
  • Most of endocrine disrupters (EDs) have been reported to exhibit estrogenic or anti-androgenic activity and thereby may disrupt reproductive development in human or wildlife. This study was performed to investigate the effects of estrogen (E$_2$), bisphenol (BP) and octylphenol (OP) on the mouse Leydig cell line (TM3). TM3 originated from testis of 11~13-daly-old BALB/c nu/+ mice was cultured in DMEM supplemented with 10% FBS alone or medium with estrogen (E$_2$), bisphenol (BP) and octylphenol (OP; 1 pM, 1 nM, 1 $\mu$M, 1 mM, respectively) for 48 hours. After culture, total cell number and viability were assessed by heamocyto-meter and trypan blue stain. Expression of cytochrome P450scc (CYPscc) mRNA whose product is involved in steroid hormone biosynthesis and estrogen receptor $\alpha$(ER $\alpha$) mRNA were detected by RT-PCR. As a result, treatment of TM3 with E$_2$, BP and OP(1 mM, respectively) significantly decreased the viability but not all of groups as high as 1 $\mu$M. Exposure of TM3 to OP significantly reduced the total cell number but not E$_2$ or BP. The expression of CYPscc mRNA was slightly reduced in BP (1 nM, 1 $\mu$M) and significantly decreased in OP (1 nM, 1 $\mu$M) treated TM3, except E$_2$ group. But the expression of ER $\alpha$ mRNA was sightly increased in all treated groups. In conclusion, BP and OP (high concentration) might inhibit steroidogenesis by decreasing the CYPscc mRNA expression in the mouse testis. These results suggest that BP and OP might impair spermatogenesis and subsequently disturb testicular function.

  • PDF

Developmental Capacity of Mouse Oocytes within Preantral Follicles Cultured in Medium Supplemented with Gonadotroplhins (성선자극호르몬이 첨가된 배양액에서 체외배양된 생쥐 Preantral Follicles 내 난자의 발생능력)

  • Kim, D.H;Kang, H.G.;Kim, M.K.;Han, S.W.;Chi, H.J.;Lee, H.J.;Lee, H.T.;Chung, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.395-406
    • /
    • 2000
  • The present study was conducted to examine the developmental capacity of mouse oocytes within prenatal follicles cultured various concentrations of FSH and LH and the expression of cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and cytochrome P450 17 $\alpha$ -hydroxylase (P450)$_{17{\alpha}}$ mRNA, as luteinization and atretic marker, in these culture conditions. In addition, we investigated the concentrations of progesterone and testosterone in culture medium. The developmental potential up to blastocyst of the oocytes grown in vitro was higher in the FSH alone (30.2%) and 10 $m\ell$U/$m\ell$ LH and 100 $m\ell$U/$m\ell$ FSH treated (28.0%) groups than in the 100 $m\ell$U/$m\ell$ LH and 100 $m\ell$U/$m\ell$ FSH treated group (22.0%). And the mean numbers of cell per blastocyst was higher in the FSH alone (50.9$\pm$26.1) and 10 $m\ell$U/$m\ell$ LH and 100 $m\ell$U/$m\ell$ FSH treated (51.0$\pm$21.1) groups when compared to the 100 $m\ell$U/$m\ell$ LH and 100 $m\ell$U/$m\ell$ FSH treated group (45.2$\pm$15.1). The expressions of P450scc and P450$_{17{\alpha}}$ mRNA in the oocyte -cumulus complexes were increased with increasing of LH concentration, and also the secretions of progesterone and testosterone were increased. Especially, in the 100 $m\ell$U/$m\ell$ LH and 100 $m\ell$U/$m\ell$ FSH treated group, the expression of P450scc and P450$_{17{\alpha}}$ were significantly increased, and the secretion of progesterone and testosterone were significantly increased. Therefore, these data show that gonadotrophins are essential for the in vitro culture of preantral follicles, but that increasing of LH concentration is reduced the developmental capacity of oocytes. The cause of these findings may be due to increasing of progesterone and testosterone secretion by the enhance of P450scc and P450$_{17{\alpha}}$ mRNA expressions, as markers of luteinization and atresia. Conclusively, this study suggest that supplementation of 100 $m\ell$U/$m\ell$ FSH or 10 $m\ell$U/$m\ell$ LH and 100 $m\ell$U/$m\ell$ FSH may be optimal condition for the culture of mouse pre antral follicles.

  • PDF