• Title/Summary/Keyword: Cytochrome P450 isozyme

Search Result 24, Processing Time 0.022 seconds

Naturally-Occurring Novel Anticatcinogens : Conjugated Dienoic Derivatives of Linoliec Acid (CLA) (새로이 분류된 천연 항암제 : Conjugated Dienoic Derivatives of Linoleic Acid (CLA))

  • 하영래;마이클파리자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.4
    • /
    • pp.401-407
    • /
    • 1991
  • Anticarcinogenic conjugated dienoic derivatives of linoleic acid (CLA) is present in grilled beef, cheese, and related foods, CLA is generated via isomerization of linoleic acid in the cow's rumen by anaerobic bacteria and food proceessing as well. Another source of CLA is its endogenous generation via the carbon centered free radical oxdation of linoleic acid. We propose that the formation and generation of CLA in vivo represents a previously unrecognized in situ "defense mechanism" against membrane attack by oxygen free radicals. The cis, 9-trans, 11 CLS isomer is selectively incorporated into cellular phospholipid, which exhibits a potent antioxidant, reduces the activation of 2-amino-3-methylimidazo, [4,5-f] quinoline (IQ) for baxterial mutagenesis, and inhibits ornithine decarboxylase(ODC) activity induced by 12-0-tetradecanoylphorbol-13-acetate (TPA). We believe that at least these biological activities of CLA explain the anticarcinogenic activity of CLA.

  • PDF

Modulation of Biotransformation Enzymes by Phytochemicals: Impact of Genotypes

  • Lampe Johanna W.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.65-70
    • /
    • 2004
  • Modulation of biotransformation enzymes is one mechanism by which a diet high in fruits and vegetable may influence cancer risk. Inhibition of cytochrome P450s (CYP) and concomitant induction of conjugating enzymes are hypothesized to reduce the impact of carcinogens in humans. Thus, exposure to types and amounts of phytochemicals may influence disease risk. Like other xenobiotics, many classes of phytochemicals are rapodly conjugated with glutathione, glucuronide, and sulfate moieties and excreted in urine and bile. In humans, circulating phytochemical levels very widely among individuals even in response to controlled dietary interventions. Polymorphisms in biotransformation enzymes, such as the glutathione S-transferases (GST), UDP-glucuronosyltransferases (UGT), and sulfotransferases (SULT), may ocntribute to the variability in phytochemical clearance and efficacy; polymorphic enzymes with lower enzyme activity prolong the half-lives of phytochmicals in vivo. Isothiocyanates (ITC) in cruciferous vegetables are catalyzed by the four major human GSTs: however reaction velocities of the enzymes differ greatly. In some observational studies of cancer, polymorphisms in the GSTMI and GSTTI genes that result in complete lack of GSTM1-1 protein, respectively, confer greater protection from cruciferous vegetable in individuals with these genotypes. Similarly, we have shown in a controlled dietary trial that levels of GST-alpha-induced by ITC-are higher in GSTMI-null individuals exposed to cruciferous vegetablse. The selectivity of glucuronosyl conjugation of flavonoids is dependent both on flavonoid structure as well as on the UGI isozyme involved in its conjuagtion. The effects of UGI polymorphisms on flavonoid clearnace have not been examind; but polymorphisms affect glucuronidation of several drugs. Given the strong interest in the chemopreventive effects of flavonoids, systematic evaluation of these polymorphic UGTs and flavonoid pharmacokinetics are warranted. Overall, these studies suggest that for phytochemicals that are metabolized by, and affect activity of, biotransformation enzymes, interactions between genetic polymorphisms in the enzymes and intake of the compounds should be considered in studies of cancer risk. Genetic polymorphisms in biotransformation enzymes may account in prat for individual variation in metabolism of a wide range of phytochemicals and their ultimate impact on health.

  • PDF

Protective Effect Naringin on Carbon Tetrachloride Induced Hepatic Injury in Mice (나린진(Naringin)의 $CCl_4$에 의한 급성 간독성 보호효과)

  • Chae, Soo-Chul;Kho, Eun-Gyeong;Choi, Seung-Hyun;Ryu, Geun-Chang
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.325-335
    • /
    • 2008
  • The protective effects of the Naringin, on carbon tetrachloride ($CCl_4$)-induced hepatotoxicity and the possible mechanisms involved in this protection were investigated in mice. Pretreatment with Naringin prior to the administration of $CCl_4$ significantly prevented an increase in serum alanine, aspartate aminotransferase activity and hepatic lipid peroxidation in a dose-dependent manner. In addition, pretreatment with Naringin also significantly prevented the depletion of glutathione (GSH) content in the livers of $CCl_4$-induced mice. However, reduced hepatic glutathione levels was unaffected by treatment with Naringin alone. In addition, Naringin prevented $CCl_4$-induced apoptosis and necrosis, as indicated by a liver DNA laddering. To determine whether caspase-8,-3 pathway involved in $CCl_4$-induced acute liver injury, caspase-8, -3 activities were tested by ELISA. Naringin attenuated $CCl_4$induced caspase-8, -3 activities in mouse livers. $CCl_4$-induced hepatotoxicity was also prevented, as indicated by a liver histopathologic study. The effects of Naringin on the cytochrome P450 (CYP) 2E1, the major isozyme involved in $CCl_4$ were also investigated. Treatment of mice with Naringin resulted in a significant decrease of the CYP2E1-dependent hydroxyl at ion and aniline in a dose-dependent manner. These findings suggest that protective effects of Naringin against the $CCl_4$-induced hepatotoxicity may be due to its ability to block CYP2E1-mediated $CCl_4$ bioactivation and that is also protects against caspase-8, -3 pathway mediated apoptosis.

Effects of deoxynivalenol- and zearalenone-contaminated feed on the gene expression profiles in the kidneys of piglets

  • Reddy, Kondreddy Eswar;Lee, Woong;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Woon;Yu, Dongjo;Cho, Ara;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.138-148
    • /
    • 2018
  • Objective: Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), common contaminants in the feed of farm animals, cause immune function impairment and organ inflammation. Consequently, the main objective of this study was to elucidate DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the kidneys of piglets. Methods: Fifteen 6-week-old piglets were randomly assigned to three dietary treatments for 4 weeks: control diet, and diets contaminated with either 8 mg DON/kg feed or 0.8 mg ZEN/kg feed. Kidney samples were collected after treatment, and RNA-seq was used to investigate the effects on immune-related genes and gene networks. Results: A total of 186 differentially expressed genes (DEGs) were screened (120 upregulated and 66 downregulated). Gene ontology analysis revealed that the immune response, and cellular and metabolic processes were significantly controlled by these DEGs. The inflammatory stimulation might be an effect of the following enriched Kyoto encyclopedia of genes and genomes pathway analysis found related to immune and disease responses: cytokine-cytokine receptor interaction, chemokine signaling pathway, toll-like receptor signaling pathway, systemic lupus erythematosus (SLE), tuberculosis, Epstein-Barr virus infection, and chemical carcinogenesis. The effects of DON and ZEN on genome-wide expression were assessed, and it was found that the DEGs associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9, CXCL10, chemokine [C-C motif] ligand 4), proliferation (insulin like growth factor binding protein 4, IgG heavy chain, receptor-type tyrosine-protein phosphatase C, cytochrome P450 1A1, ATP-binding cassette sub-family 8), and other immune response networks (lysozyme, complement component 4 binding protein alpha, oligoadenylate synthetase 2, signaling lymphocytic activation molecule-9, ${\alpha}$-aminoadipic semialdehyde dehydrogenase, Ig lambda chain c region, pyruvate dehydrogenase kinase, isozyme 4, carboxylesterase 1), were suppressed by DON and ZEN. Conclusion: In summary, our results indicate that high concentrations of DON and ZEN suppress the inflammatory response in kidneys, leading to potential effects on immune homeostasis.