• 제목/요약/키워드: Cytochrome P450 gene expression

검색결과 102건 처리시간 0.025초

대서양 연어(Salmo salar)의 수온 스트레스에 의한 Hsp90 및 CYP1A 발현 양상 비교 (Comparison of Hsp90 and CYP1A Expression Patterns by Water Temperature Stress in Atlantic Salmon (Salmo salar))

  • 강한승;송재희;강희웅
    • 한국해양생명과학회지
    • /
    • 제3권2호
    • /
    • pp.51-58
    • /
    • 2018
  • 수온의 변화는 어류의 거의 모든 생리학적 부분에 영향을 미친다. 기후 변화로 인한 수온의 상승은 어류에게 물리적 피해를 줄 수 있다. 이 연구는 최적의 수온(15℃)보다 높은 수온(20℃)에서의 대서양 연어의 건강상태를 평가하기 위해 수행하였다. 간 조직은 열 적응에 중요한 대사기능을 발휘하기에 본 연구에 간 조직을 사용하였다. 생체지표유전자의 개발을 위한 분석 방법으로는 NGS RNAseq 방법을 사용하였고, 생체지표유전자의 발현 양상을 관찰하기 위한 분석 방법으로는 RT-qPCR을 사용하였다. NGS RNAseq 분석을 통해 1,366개의 차별적 발현 유전자를 확인하였으며, 그 중에서 880개의 증가하는 유전자와 486개의 감소하는 유전자를 확인하였다. 생체지표유전자로는 heat shock protein 90 alpha (Hsp90α), heat shock protein 90 beta (Hsp90β) 및 cytochrome P450 1A (CYP1A)을 선정하였는데 이들 유전자는 NGS RNAseq 분석에서 수온의 변화에 민감하게 반응하는 유전자들이었다. 이들 유전자의 RT-qPCR을 통한 발현 양상은 NGS RNAseq 분석과 유사하게 나타났다. 이 연구의 결과는 다른 어종에도 적용할 수 있으며, 산업적으로도 유용하다고 생각된다.

Assessment of Biomarkers in Acetaminophen-Induced Hepatic Toxicity by siRNA

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.438-445
    • /
    • 2009
  • We investigated global gene expression from both mouse liver and mouse hepatic cell lines treated with acetaminophen (APAP) in order to compare in vivo and in vitro profiles and to assess the feasibility of the two systems. During our analyses of gene expression profiles, we picked up several down-regulated genes, such as the cytochrome P450 family 51 (Cyp51), sulfotransferase family cytosolic 1C member 2 (Sult1c2), 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1), and several genes that were up-regulated by APAP, such as growth arrest and DNA-damage-inducible 45 alpha (Gadd45a), transformation related protein 53 inducible nuclear protein 1 (Trp53inp1) and zinc finger protein 688 (Zfp688). For validation of gene function, synthesized short interfering RNAs (siRNAs) for these genes were transfected in a mouse hepatic cell line, BNL CL.2, for investigation of cell viability and mRNA expression level. We found that siRNA transfection of these genes induced down-regulation of respective mRNA expression and decreased cell viability. siRNA transfection for Cyp51 and others induced morphological alterations, such as membrane thickening and nuclear condensation. Taken together, siRNA transfection of these six genes decreased cell viability and induced alteration in cellular morphology, along with effective inhibition of respective mRNA, suggesting that these genes could be associated with APAP-induced toxicity. Furthermore, these genes may be used in the investigation of hepatotoxicity, for better understanding of its mechanism.

CYP3A4 Expression in Breast Cancer and its Association with Risk Factors in Mexican Women

  • Floriano-Sanchez, Esau;Rodriguez, Noemi Cardenas;Bandala, Cindy;Coballase-Urrutia, Elvia;Lopez-Cruz, Jaime
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3805-3809
    • /
    • 2014
  • Background: In Mexico, breast cancer (BCa) is the leading type of cancer in women. Cytochrome P450 (CYP450) is a superfamily of major oxidative enzymes that metabolize carcinogens and many antineoplastic drugs. In addition, these enzymes have influence on tumor development and tumor response to therapy. In this report, we analyzed the protein expression in patients with BCa and in healthy women. Links with some clinic-pathological characteristic were also assessed. Materials and Methods: Immunohistochemical analyses were conducted on 48 sets of human breast tumors and normal breast tissues enrolled in Hospital Militar de Especialidades de la Mujer y Neonatologia and Hospital Central Militar, respectively, during the time period from 2010 to 2011. Informed consent was obtained from all participants. Statistical analysis was performed using ${\chi}^2$ or Fisher exact tests to estimate associations and the Mann Whitney U test for comparison of group means. Results: We found a significant CYP3A4 overexpression in BCa stroma and gland regions in comparison with healthy tissue. A significant association between protein expression with smoking, alcoholism and hormonal contraceptives use was also observed. Additionally, we observed estrogen receptor (ER) and progesterone receptor (PR) positive association in BCa. Conclusions: We suggest that CYP3A4 expression promotes BCa development and can be used in the prediction of tumor response to different treatments. One therapeutic approach may thus be to block CYP3A4 function.

Cytochrome P450 1A1, 2E1 and GSTM1 Gene Polymorphisms and Susceptibility to Colorectal Cancer in the Saudi Population

  • Saeed, Hesham Mahmoud;Alanazi, Mohammad Saud;Nounou, Howaida Attia;Shalaby, Manal Ali;Semlali, Abdelhabib;Azzam, Nahla;Aljebreen, Abdeulrahan;Alharby, Othman;Parine, Narasimha Reddy;Shaik, Jilani;Maha, Maha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3761-3768
    • /
    • 2013
  • Background: The Saudi population has experienced a sharp increase in colorectal and gastric cancer incidences within the last few years. The relationship between gene polymorphisms of xenobiotic metabolizing enzymes and colorectal cancer (CRC) incidence has not previously investigated among the Saudi population. The aim of the present study was to investigate contributions of CYP1A1, CYP2E1, and GSTM1 gene polymorphisms. Materials and Methods: Blood samples were collected from CRC patients and healthy controls and genotypes were determined by polymerase chain reaction restriction fragment length polymorphism and sequencing. Results and Conclusions: $CYP2E1^*6$ was not significantly associated with CRC development (odd ratio=1.29; confidence interval 0.68-2.45). A remarkable and statistically significant association was observed among patients with $CYP1Awt/^*2A$ (odd ratio=3.65; 95% confidence interval 1.39-9.57). The $GSTM1^*0/^*0$ genotype was found in 2% of CRC patients under investigation. The levels of CYP1A1, CYP2E1 and GSTM1 mRNA gene expression were found to be 4, 4.2 and 4.8 fold, respectively, by quantitative real time PCR. The results of the present case-control study show that the studied Saudi population resembles Caucasians with respect to the considered polymorphisms. Investigation of genetic risk factors and susceptibility gene polymorphisms in our Saudi population should be helpful for better understanding of CRC etiology.

Scopoletin 보충이 만성 알코올을 급여한 흰쥐의 인슐린저항성 및 항산화방어계에 미치는 영향 (Effects of Scopoletin Supplementation on Insulin Resistance and Antioxidant Defense System in Chronic Alcohol-Fed Rats)

  • 이해인;이미경
    • 한국식품영양과학회지
    • /
    • 제44권2호
    • /
    • pp.173-181
    • /
    • 2015
  • 본 연구는 scopoletin 식이 보충이 알코올로 인해 유발되는 인슐린저항성과 항산화방어계에 미치는 영향을 구명하고자 하였다. 실험동물은 4주령의 수컷 SD계 흰쥐에게 총 열량의 36%에 해당하는 알코올을 액체식이 형태로 8주간 공급하였으며, scopoletin은 알코올 액체식이 리터당 0.01 g과 0.05 g 두 수준으로 첨가하였다. 정상군은 알코올대조군과 동량의 에너지를 섭취하도록 하였다. 8주간의 알코올 급여는 공복 시 혈당 변화를 일으키지 않았으나 혈청 인슐린 함량을 증가시켰으며, 이는 인슐린저항성과 내당능 장애를 유발하였다. 그러나 scopoletin 저농도와 고농도 급여군 모두 인슐린 함량, 인슐린저항성 지표 및 내당능을 효과적으로 개선하는 것으로 나타났다. 알코올대조군은 p-PI3K의 단백질 발현을 유의적으로 낮추어 glucokinase 유전자 발현과 활성을 억제한 반면, 당신생 효소인 glucose-6-phosphatase의 유전자 발현과 활성을 유의적으로 높였다. 그러나 scopoletin 급여에 의하여 이들 변화는 완화되었다. 다른 당신생 효소인 phosphoenolpyruvate carboxykinase의 유전자 발현과 활성에는 영향을 미치지 않았다. 또한 scopoletin 급여군 모두 간조직의 aldehyde dehydrogenase의 활성은 알코올 대조군에 비해 증가된 반면, cytochrome P450 2E1 활성은 억제되었다. 또한 알코올로 인하여 낮아진 간조직 중의 항산화 효소(superoxide dismutase, catalase와 glutathione peroxidase)의 유전자 발현과 활성을 높임으로써 과산화수소 및 지질과산화물의 함량을 낮추었다. 이와 같이 0.001%의 scopoletin 급여량에서도 당대사의 유전자 변화를 통하여 만성 알코올로 유도되는 인슐린저항성을 개선하였으며, 알코올대사계 활성 및 항산화방어계 효소의 유전자 발현을 증가함으로써 알코올로 인한 과산화수소와 지질과산화물 생성을 개선하는 것으로 나타났다.

Effects of absorbents on growth performance, blood profiles and liver gene expression in broilers fed diets naturally contaminated with aflatoxin

  • Liu, J.B.;Yan, H.L.;Cao, S.C.;Hu, Y.D.;Zhang, H.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권2호
    • /
    • pp.294-304
    • /
    • 2020
  • Objective: The study was conducted to evaluate the effects of the absorbent (a mixture of activated carbon and hydrated sodium calcium aluminosilicate) on growth performance, blood profiles and hepatic genes expression in broilers fed diets naturally contaminated with aflatoxin. Methods: A total of 1,200 one-day-old male chicks were randomly assigned to 6 treatments with 10 replicate cages per treatment. The dietary treatments were as follows: i) control (basal diets); ii) 50% contaminated corn; iii) 100% contaminated corn; iv) control+1% adsorbent; v) 50% contaminated corn+1% absorbent; vi) 100% contaminated corn+1% absorbent. Results: During d 1 to 21, feeding contaminated diets reduced (p<0.05) body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI), but increased (p<0.05) feed-to-gain ratio (F/G). The absorbent supplementation increased (p<0.05) BW, ADG, and ADFI. There were interactions (p<0.05) in BW, ADG, and ADFI between contaminated corn and absorbent. Overall, birds fed 100% contaminated diets had lower (p<0.05) final BW and ADG, but higher (p<0.05) F/G compared to those fed control diets. The absorbent addition increased (p<0.05) serum albumin concentration on d 14 and 28 and total protein (TP) level on d 28, decreased (p<0.05) alanine transaminase activity on d 14 and activities of aspartate aminotransferase and alkaline phosphatase on d 28. Feeding contaminated diets reduced (p<0.05) hepatic TP content on d 28 and 42. The contaminated diets upregulated (p<0.05) expression of interleukin-6, catalase (CAT), and superoxide dismutase (SOD), but downregulated (p<0.05) glutathione S-transferase (GST) expression in liver. The absorbent supplementation increased (p<0.05) interleukin-1β, CAT, SOD, cytochrome P450 1A1 and GST expression in liver. There were interactions (p<0.05) in the expression of hepatic CAT, SOD, and GST between contaminated corn and absorbent. Conclusion: The results suggest that the naturally aflatoxin-contaminated corn depressed growth performance, while the adsorbent could partially attenuate the adverse effects of aflatoxin on growth performance, blood profiles and hepatic genes expression in broilers.

Hangover relieving effect of Sanghwang mushroom mycelium cultured in germinated buckwheat

  • An, Yoo-Jin;Cho, Sung-Min;Kim, Min-Su;Moon, Hae-Hee;Park, Dong-Soo;Jeon, Nam-Gen;Lee, oungjae;Han, Chang-Hoon
    • 대한수의학회지
    • /
    • 제57권3호
    • /
    • pp.147-154
    • /
    • 2017
  • The present study was performed to evaluate the hangover relieving effect of germinated buckwheat (GB) and Sanghwang mushroom mycelium cultured in GB (SGB). Both GB and SGB showed 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities and significantly increased (p < 0.001) aldehyde dehydrogenase (ALDH) activities; up to 140% increase at concentrations of $16{\mu}L/mL$. Locomotor activity test results from alcohol-SGB and alcohol-GB groups showed improved motor activities over that of the alcohol-water group at 90 min post-administration. Both alcohol-GB and alcohol-SGB groups had significantly reduced (p < 0.001) alcohol ($40.02{\pm}33.38{\mu}g/mL$, $66.01{\pm}22.04{\mu}g/mL$, respectively) and aldehyde ($5.72{\pm}0.47{\mu}g/mL$, $6.72{\pm}1.70{\mu}g/mL$, respectively) concentrations in blood compared to those in the alcohol-water group ($199.75{\pm}33.83{\mu}g/mL$, $50.43{\pm}13.88{\mu}g/mL$, respectively) at 90 min post-administration. Based on cDNA microarray analysis, expressions of ALDH genes ALDH1a7 and ALDH18a1 and cytochrome P450 (CY450) gene CYP4a30b were upregulated in the alcohol-GB and alcohol-SGB groups compared to levels in the control group. Overall, the results suggest that both GB and SGB have hangover relieving effects by reducing blood acetaldehyde levels. The molecular mechanisms may involve ALDH activation and upregulated expression of alcohol metabolism-related genes such as ALDH and CYP450.

Spatial protein expression of Panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation

  • Li, Xiaoying;Cheng, Xianhui;Liao, Baosheng;Xu, Jiang;Han, Xu;Zhang, Jinbo;Lin, Zhiwei;Hu, Lianghai
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.58-65
    • /
    • 2021
  • Background: Panax ginseng, as one of the most widely used herbal medicines worldwide, has been studied comprehensively in terms of the chemical components and pharmacology. The proteins from ginseng are also of great importance for both nutrition value and the mechanism of secondary metabolites. However, the proteomic studies are less reported in the absence of the genome information. With the completion of ginseng genome sequencing, the proteome profiling has become available for the functional study of ginseng protein components. Methods: We optimized the protein extraction process systematically by using SDS-PAGE and one-dimensional liquid chromatography mass spectrometry. The extracted proteins were then analyzed by two-dimensional chromatography separation and cutting-edge mass spectrometry technique. Results: A total of 2,732 and 3,608 proteins were identified from ginseng root and cauline leaf, respectively, which was the largest data set reported so far. Only around 50% protein overlapped between the cauline leaf and root tissue parts because of the function assignment for plant growing. Further gene ontology and KEGG pathway revealed the distinguish difference between ginseng root and leaf, which accounts for the photosynthesis and metabolic process. With in-deep analysis of functional proteins related to ginsenoside synthesis, we interestingly found the cytochrome P450 and UDP-glycosyltransferase expression extensively in cauline leaf but not in the root, indicating that the post glucoside synthesis of ginsenosides might be carried out when growing and then transported to the root at withering. Conclusion: The systematically proteome analysis of Panax ginseng will provide us comprehensive understanding of ginsenoside synthesis and guidance for artificial cultivation.

Construction of High Sensitive Detection System for Endocrine Disruptors with Yeast n-Alkane-assimilating Yarrowia lipolytica

  • Cho, Eun-Min;Lee, Haeng-Seog;Eom, Chi-Yong;Ohta, Akinori
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권11호
    • /
    • pp.1563-1570
    • /
    • 2010
  • To construct a highly sensitive detection system for endocrine disruptors (EDs), we have compared the activity of promoters with the n-alkane-inducible cytochrome P450 gene (ALK1), isocitrate lyase gene (ICL1), ribosomal protein S7 gene (RPS7), and the translation elongation factor-1${\alpha}$ gene (TEF1) for the heterologous gene in Yarrowia lipolytica. The promoters were introduced into the upstream of the lacZ or hERa reporter genes, respectively, and the activity was evaluated by ${\beta}$-galactosidase assay for lacZ and Western blot analysis for hER${\alpha}$. The expression analysis revealed that the ALK1 and ICL1 promoters were induced by n-decane and by EtOH, respectively. The constitutive promoter of RPS7 and TEF1 showed mostly a high level of expression in the presence of glucose and glycerol, respectively. In particular, the TEF1 promoter showed the highest ${\beta}$-galactosidase activity and a significant signal by Western blotting with the anti-estrogen receptor, compared with the other promoters. Moreover, the detection system was constructed with promoters linked to the upstream of the expression vector for the hER${\alpha}$ gene transformed into the Y. lipolytica with a chromosome-integrated lacZ reporter gene under the control of estrogen response elements (EREs). It was indicated that a combination of pTEF1p-hER${\alpha}$ and CXAU1-2XERE was the most effective system for the $E_2$-dependent induction of the ${\beta}$-galactosidase activity. This system showed the highest ${\beta}$-galactosidase activity at $10^{-6}\;M\;E_2$, and the activity could be detected at even the concentration of $10^{-10}\;M\;E_2$. As a result, we have constructed a strongly sensitive detection system with Y. lipolitica to evaluate recognized/suspected ED chemicals, such as natural/synthetic hormones, pesticides, and commercial chemicals. The results demonstrate the utility, sensitivity, and reproducibility of the system for identifying and characterizing environmental estrogens.

Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets

  • Sui, Shiyan;Jia, Yimin;He, Bin;Li, Runsheng;Li, Xian;Cai, Demin;Song, Haogang;Zhang, Rongkui;Zhao, Ruqian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권12호
    • /
    • pp.1695-1704
    • /
    • 2014
  • Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.