• Title/Summary/Keyword: Cytochrome P-450 2A6

Search Result 194, Processing Time 0.025 seconds

In vitro Metabolism of Stanozolol to 3'-Hydroxystanozolol in the Liver S-9 Fraction of Polychlorinated Biphenyl-treated Rats (Polychlorinated biphenyl 전처리한 횐쥐 간장의 S-9 분획에서 Stanozolol의 Hydroxylation 대사체의 생성)

  • 권오승;류재천
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.379-383
    • /
    • 2000
  • Stanozolol (STZ, 17$\alpha$-methyl-17$\beta$-hydroxy-5$\alpha$-androstano-(3,2-c) pyrazole), an anabolic steroid, is an abused drug by body-builders or atheletes, as well as medicine for treatment of aplastic anemia and vascular thrombosis. In human volunteers, the major urinary metabolite of STZ was reported to be 3'-hydroxystanozolol that was identified by gas chromatography-mass selective detector (GC/MSD). The objective of this experiment is to investigate the in vitro metabolism of STZ in liver S-9 faction of polychlorinated biphenyl-induced rats. Reaction mixture including STZ as substrate and the S-9 faction was extracted with diethyl ether and quantified by the selected ion monitoring mode of GC/MSD. The selected concentration of substrate STZ is 100 nmole and the selected time for incubation in the reaction mixture was determined to 60 min. The amount of 3'-hydroxystanozolol produced was increased by about 6-fold in the reaction medium including the liver S-9 fraction of polychlorinated biphenyl-induced rats, compared to that of untreated rats. Inhibitors of cytochrome P450, SKF-525A and 7,8-benzoflavone, decreased the production of 3'-hydroxystanozolol by about 89~100% and 65~75%, respectively; In conclusion, hydroxylation of STZ into 3'-hydroxystanozolol is confirmed by GC/MSD and is catalyzed by cytochrome P450.

  • PDF

Expression of CYP2A6, CYP2D6 and CYP4A11 Polymorphisms in COS7 Mammalian Cell Line

  • Lee, Hye-Ja;Park, Mi-Kyung;Park, Young-Ran;Kim, Dong-Hak;Yun, Chul-Ho;Chun, Young-Jin;Shin, Hee-Jung;Na, Han-Sung;Chung, Myeon-Woo;Lee, Chang-Hoon
    • Toxicological Research
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • The cytochrome P450 (P450, CYP) are the superfamily of heme-containing monooxygenase enzymes, found throughout all nature including mammals, plants, and microorganisms. Mammalian P450 enzymes are involved in oxidative metabolism of a wide range of endo- and exogenous chemicals. Especially P450s involved in drug metabolisms are important for drug efficacy and polymorphisms of P450s in individuals reflect differences of drug responses between people. To study the functional differences of CYP2A6, CYP2D6, and CYP4A11 variants, we cloned the four CYP2A6, three CYP2D6, and three CYP4A11 variants, which were found in Korean populations, in mammalian expression vector pcDNA by PCR and examined their expressions in COS-7 mammalian cells using immunoblots using P450 specific polyclonal antibodies. Three of four CYP2A6, two of three CYP4A11, and two of three CYP2D6 variants showed expressions in COS-7 cells but the relative levels of expressions are remarkably different in those of each variants. Our findings may help to study and explain the differences between functions of CYP variants and drug responses in Korean populations.

POTENT INHIBITION OF HUMAN CYTOCHROME P450 1 ENZYMES BY DIMETHOXYPHENYL VINYL THIOPHENE

  • Lee, Sang-Kwang;Kim, Sang-Hee;Kim, Mie-Young;Chun, Young-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.312.3-313
    • /
    • 2002
  • Recently we have reported that various hydroxystilbenes show strong inhibition of human P450 1 activity. A series of synthetic trans-stilbene derivatives were prepared and their inhibitory potentials were evaluated with the bacterial membrane of recombinant human P450 1A1, 1A2 or 1B1 coexpressed with human NADPH-P450 reductase to find new candidates for cancer chemoprevention, Of the compounds tested. SY-021 (3.5-dimethoxyphenyl vinyl thiophene) exhibited a potent inhibition of human P450 181 with an IC$_{50}$ value of 2 nM. SY-021 also showed the inhibitrion of P450 1A1 with IC$_{50}$ value of 61 nM and P450 1A2 with IC$_{50}$ value of 11 nM. SY-021 showed 31-fold selectivity for P450 1B1 over P450 1A1 and 6-fold selectivity for P450 1B1 over 1A2. We have further investigated the inhibition kinetics of P450 1A1. 1A2 and 1B1 by SY-021. The modes of inhibition by SY-021were non-compeitive for all three P450 1 enzymes. Effect of preincubation with NADPH on inhibition of P450 1B1 by SY-021 was determined. These results suggest that SY-021 is one of the mostj potent inhibitor of human P450 1 enzymes and may be considered as a good candidate for a cancer chemopreventive agent in human

  • PDF

In Vitro Inhibitory Effect of Licoricidin on Human Cytochrome P450s

  • Kim, Sunju;O, Heungchan;Kim, Jeong Ah;Lee, Seung Ho;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • v.5 no.3
    • /
    • pp.84-88
    • /
    • 2014
  • Licoricidin isolated from Glycyrrhiza uralensis is known to have anticancer, anti-nephritic, anti-Helicobacter pylori, and antibacterial effects. In this study, a cocktail probe assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to investigate the modulating effect of licoricidin on cytochrome P450 (CYP) enzymes in human liver microsomes. When licoricidin was incubated at $0-25{\mu}m$ with CYP probes for 60 min at $37^{\circ}C$, it showed potent inhibitory effects on CYP2B6-catalyzed bupropion hydroxylation and CYP2C9-catalyzed diclofenac 4'-hydroxylation with half maximal inhibitory concentration ($IC_{50}$) values of 3.4 and $4.0{\mu}m$, respectively. The inhibition mode of licoricidin was revealed as competitive, dose-dependent, and non-time-dependent, and following the pattern of Lineweaver-Burk plots. The inhibitory effect of licoricidin has been confirmed in human recombinant cDNA-expressed CYP2B6 and 2C9 with $IC_{50}$ values of 4.5 and $0.73{\mu}m$, respectively. In conclusion, this study has shown the potent inhibitory effect of licoricidin on CYP2B6 and CYP2C9 activity could be important for predicting potential herb-drug interactions with substrates that mainly undergo CYP2B- and CYP2C9-mediated metabolism.

RNA Expression of Cytochrome P450 in Mexican Women with Breast Cancer

  • Bandala, Cindy;Floriano-Sanchez, E.;Cardenas-Rodriguez, N.;Lopez-Cruz, J.;Lara-Padilla, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2647-2653
    • /
    • 2012
  • Involvement of cytochrome P450 genes (CYPs) in breast cancer (BCa) may differ between populations, with expression patterns affected by tumorigenesis. This may have an important role in the metabolism of anticancer drugs and in the progression of cancer. The aim of this study was to determine the mRNA expression patterns of four cytochrome P450 genes (CYP2W1, 3A5, 4F11 and 8A1) in Mexican women with breast cancer. Real-time PCR analyses were conducted on 32 sets of human breast tumors and adjacent non-tumor tissues, as well as 20 normal breast tissues. Expression levels were tested for association with clinical and pathological data of patients. We found higher gene expression of CYP2W1, CYP3A5, CYP4F11 in BCa than in adjacent tissues and only low in normal mammary glands in our Mexican population while CYP8A1 was only expressed in BCa and adjacent tissues. We found that Ki67 protein expression was associated with clinicopathological features as well as with CYP2W1, CYP4F11 and CYP8A1 but not with CYP3A5. The results indicated that breast cancer tissues may be better able to metabolize carcinogens and other xenobiotics to active species than normal or adjacent non-tumor tissues.

Crystal Structure and Biochemical Analysis of a Cytochrome P450 Steroid Hydroxylase (BaCYP106A6) from Bacillus Species

  • Ki-Hwa Kim;Hackwon Do;Chang Woo Lee;Pradeep Subedi;Mieyoung Choi;Yewon Nam;Jun Hyuck Lee;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.387-397
    • /
    • 2023
  • Cytochrome P450 (CYP) is a heme-containing enzyme that catalyzes hydroxylation reactions with various substrate molecules. Steroid hydroxylases are particularly useful for effectively introducing hydroxyl groups into a wide range of steroids in the pharmaceutical industry. This study reports a newly identified CYP steroid hydroxylase (BaCYP106A6) from the bacterium Bacillus sp. and characterizes it using an in vitro enzyme assay and structural investigation. Bioconversion assays indicated that BaCYP106A1 catalyzes the hydroxylation of progesterone and androstenedione, whereas no or low conversion was observed with 11β-hydroxysteroids such as cortisol, corticosterone, dexamethasone, and prednisolone. In addition, the crystal structure of BaCYP106A6 was determined at a resolution of 2.8 Å to investigate the configuration of the substrate-binding site and understand substrate preference. This structural characterization and comparison with other bacterial steroid hydroxylase CYPs allowed us to identify a unique Arg295 residue that may serve as the key residue for substrate specificity and regioselectivity in BaCYP106A6. This observation provides valuable background for further protein engineering to design commercially useful CYP steroid hydroxylases with different substrate specificities.

Identification and Partial Purification of Ethanol-Induced Hemoproteins in Human Liver (사람의 간에서 Ethanol에 의해 유발되는 hemoprotein들의 확인 및 부분정제)

  • Park, Sung-Woo;Seo, Bae-Seok;Jin, Kwang-Ho
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.117-124
    • /
    • 1995
  • To Purify hemoproteins showing from 218nm absorbance, crude liver extract of human with hepatocirrhosis was treated with Triton N-101. Hemoproteins were purified by modification of Mohamed's method. This crude extract was applied to Octyl-Sepharose CL-4B column and the step elution was performed with 0.06% Lubrol PX and 0.25% Lubrol PX. The absorption of effluents were examined at 418nm and two peaks were appeared(Fig. 2). Hemoproteins were purified from Hyydroxyapatite and DEAE-Sephadex A-25 columns which the first peak was applied to(Fig. 3, 4). In death with suddenly, purified hemoproteins with 62 and 45kDa were obtained from 12.5% SDS-PAGE. In death with hepatocirrhosis, purified hemoprotein with 54kDa was obtainded from 12.5% SDS-PAGE(Fig. 5). Cytochrome P450 was purified to a specific content of 20.8nmol/mg protein with a recovery of about 4.1%. Absorbance maximum of these hemoproteins were 446nm at UV spectruum(Fig. 6).

  • PDF

Effect of Glucose-diethyldithiocarbamate on Drug Metabolizing Enzymes in Rats (Glucose-diethyldithiocarbamate가 흰쥐의 약물 대사 효소에 미치는 영향 연구)

  • 최병기;신혜주
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.299-304
    • /
    • 2000
  • The modulation of cytochrome P450(P450) activities and glutathione S-transferase (GST) was investigated after i.p. administration of glucose-diethyldithiocarbamate (Glu-DDTC) to rats. P450 1 A2 and 2El activities were inhibited by 60% 4 hr after the administration of 200 mg Glu-DDTC/kg and those activities were recovered to original levels 24 hr after dosing. In contrast, GST activities were enhanced up to 24 hr after dosing. These results seem to be due to the bifunctional activity of Glu-DDTC. Glu-DDTC acts as an inhibitor of P450 enzymes as well as inducer of GST enzyme. Glu-DDTC inhibited PNP hydroxylation (P450 2El) and ethoxycoumarin O-deethylation (P450 1A2) in a dose-dependent manner up to 200 mg/kg wherease it did not affect testosterone 6$\beta$-hydroxylation (P450 3A) and pentoxyresorufin O-dealkylation (P450 2B) activities. Induction of GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzenen (DCNB) was dependent on the dose of Glu-DDTC and no species difference in the GST induction was seen between rat and mouse. Amoung GST subunits, Ya, Yb1 and partially Yb2 were induced by Glu-DDTC as conjugated by western blotting. The levels Yp, Yk and Yc subunits were not affected by Glu-DDTC treatment. Therefore the enhanced activity of GST toward CDNB and DCNB might be due to the induction of Ya, Ybl and partially Yb2 subunits. In conclusion, Glu-DDTC selectively inhibited P45O 1A2 and P450 2El activities whereas it enhanced Ya, Ybl subunits and partially Yb2 subunits of GST and the antimutagenic activity of this compound might be attributed from the modulation of these enzyme activities in animals.

  • PDF

Drug Interactions between Cardiovascular Agents and Psychotropic Drugs (심혈관질환약물과 향정신성약물의 약물상호작용)

  • Park, Joo-Eon;Jung, Kyung-Hee
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • There are numerous drug interactions related to many psychotropic and cardiovascular medications. Firstly, the principles in predicting drug interactions are discussed. Cytochrome P (CYP) 450 plays a significant role in the metabolism of these drugs that are substrates, inhibitors, or inducers of CYP450 enzymes. The two most significant enzymes are CYP2D6 and CYP3A4. The ability of psychotropic drugs to act as inhibitors for the enzymes may lead to altered efficacy or toxicity of co-administered cardiovascular agents as a substrate for the enzymes. The following is also a review of the known interactions between many commonly prescribed cardiovascular agents and psychotropic drugs. Most beta blockers are metabolized by CYP2D6, which may lead to drug toxicity when they use in combination with potent CYP2D6 inhibitors including bupropion, chlorpromazine, haloperidol, selective serotonin reuptake inhibitors, and quinidine. Concomitant administration of lithium with angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and diuretics may increase serum lithium concentrations and toxicity. Calcium channel blockers and cholesterol lowering agents are subject to interactions with potent inhibitors of CYP3A4, such as amiodarone, diltiazem, fluvoxamine, nefazodone, and verapamil. Prescribing antiarrhythmic drugs in conjunction with medications are known to prolong QT interval and/or inhibitors on a relevant CYP450 enzyme is generally not recommended, or needs watchful monitoring. Digoxin and warfarin also have warrant careful monitoring if co-administered with psychotropic drugs.

  • PDF

Effect of Biphenyl Dimethyl Dicarboxylate on Cytochrome $P_{450}$ 1A1 and 2B1 and ${CCl_4}-Induced$ Hepatotoxicity in Rat Liver (Biphenyl Dimethyl Dicarboxylate가 간내 Cytochrome $P_{450}$ 1A1과 2Bl 및 $CCl_4$ 유도 간독성에 미치는 영향)

  • 김순선;오현영;김학림;양지선;김동섭;신윤용;최기환
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.827-833
    • /
    • 1999
  • In this study, we have investigated the effect of Biphenyl Dimethyl Dicarboxylate (DDB), a synthetic analogue of Schizandrin C isolated from Schizandrae Fructus on cytochrome $P_450$ lAl and 2Bl, and the protective mechanism against $CCl_4-induced$ hepatotoxicity in rat liver. After DDB was administered into male rats for different periods of time (1~7 days) and with different doses (25, 50, 100 and 200 mg/kg), mRNA levels of CYPlAl were measured by polymearse chain reaction (PCR) and assayed the activities of CYPlAl specific ethoxyresorufin-O-dealkylase (EROD) and CYP2Bl specific benzyloxyresorufin-O-dealkylase (BROD). DDB treatment resulted in increase in CYP2Bl mRNA level and BROD activity, whereas there was no change in CYPlAl mRNA level and EROD activity. This effect of DDB was time-and dose-dependent and reached maximal level by 3 day and 200 mg/kg treatment. In addition, rats were pre-treated with DDB at doses of 25, 50 or 100 mg/kg daily for 4 days, 3-hr after final treatment on the 4th day, $CCl_4$ 0.3ml/kg was intraperitonially injected into the rats to examine the effect of DDB on $CCl_4-induced$ hepatic injury. Serum levels of ALT and AST were determined and histopathological examination was done in rat liver. Furthermore, we have measured hepatic microsomal malondialdehyde(MDA) level, a parameter of lipid peroxidation. Based on serum ALT level and lipid peroxidation, pretreatment of DDB, 50 mg/kg appeared the most protective effect against $CCl_4-induced$ heapatotoxity. These results indicate that DDB stimulates CYP2Bl mRNA level and BROD activity in time and dose dependent manner and suggest that protective effect of DDB on $CCl_4-induced$ hepatotoxicity may be mediated through free radical scavenging.

  • PDF