• Title/Summary/Keyword: Cys117Ser

Search Result 3, Processing Time 0.016 seconds

Overproduction and Operator DNA-Protein Blotting of R100 Mutant MerR from Shigella flexneri

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.250-255
    • /
    • 1994
  • Wild-type and four mutant R100 merR genes were cloned and the proteins overproduced under tac promoter control of pKK223-3. His118Ala, Cys117Ser, Cys126Ser, and wild-type MerR were successfully overproduced although amino-terminal 14 amino acids deletion mutant MerR was not successful. The amount of overproduced wild-type MerR protein as well as other mutant MerR was between 15%-20% of the total protein. The protein was able to be purified up to 95% homogeneity. Specific DNA-protein blotting experiments showed that the 95 bp operator containing DNA fragment could bind to Cys126Ser, His118Ala, and wild- type MerR, but not to Cys117Ser. These results were consistent with the previously reported complementation experiment results that His118Ala, Cys126Ser, and wild-type MerR could repress the mer operon but Cys117Ser could not.

  • PDF

Effects of R100 Mutant MerR on Regulation of mer Operon from Shigella flexneri

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.245-249
    • /
    • 1994
  • An amino-terminal 14 amino acids deletion and three site-directed mutations were created to investigate the mechanism of induction and repression of MerR regulatory protein in R100 mer operon from gramnegative Shigella flexneri. The amino-terminal 14 amino acids deletion, Cysl17Ser, and Cys126Ser mutations abolished the inducibility of the mer operon and the Hisl18Ala mutation resulted in the reduction of inducibility (about 9.1 % remaining) in complementation experiment in the presence of $Hg^{2+}$ at subtoxic level ($1\mu M$). The complementation experiment with $Hg^{2+}$ absent showed that Hisl18Ala, Cys126Ser, and wild-type MerR could repress the operon but Cysl17Ser could not, and the amino-terminal deletion mutant could neither induce nor repress the R100 mer operon.

  • PDF

Studies on peptide during soybean-koji preparation -Part III Amino acid sequence of oligopeptides formed during soybean-koji preparation- (콩고오지 제조중(製造中)의 peptide에 관(關)한 연구(硏究) -제3보(第三報) 콩고오지 제조중(製造中)에 생성(生成)되는 저급(低級) peptide의 구조(構造)-)

  • Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.6
    • /
    • pp.107-117
    • /
    • 1965
  • (1) In order to study the specificity of Aspergillus soya protease to soybean protein, as well as the types of peptides formed during soybean-koji prerapation the amino acid sequence for the di & tripeptide and N-terminal amino acid residue and C-terminal amino acid residue were identified. As the results of the study, the following were obtained. Gly, Glu. Ala. Ser. Glu. Ser. Ala. Val (Cys, Glu, Ser, Ala, Arg, Try, Leu or Ileu) Asp. Phe (His, Arg, Cys, Asp, Ser, Ala, Leu or Ileu) Glu. Ala (Cys, Gly, Met) Glu. Ala (Asp, Glu,) Gly. Met (Asp, Glu, Ala, Tyr, Leu or Ileu, Lys,) Gly. Leu or Ileu (His, Asp, Glu, Gly, Ser, Lys, Thr, Phe,) Cys. Gly (Asp, Tyr,) Glu. Pro (Asp, Glu, Ser, Gly, Thr, Ala, Val, Leu or Ileu) Try. Ser (Gly, Glu, Arg, Ala, Met, Leu or Ileu,) Asp. Met (Asp, Glu, Ala, Try, Pro, Leu or Ileu,) His Thr (Ser, Gly, Tyr, Pro, Leu or Ileu,) Glu. Gly (Asp, Ala, Ser, Glu,) Leu or Ileu (2) It has revealed that Aspergillus soya protease has considerably wider range of specificity than that of chymotrypsin, pepsin and trypsin but not mold protease and Aspergillus saitoi protease. It can be said that Asp. soya protease split the bond adjacent to glutamic acid, aspartic acid, glycine, serine, alanine, cystine, tryptophan, histidine preferably acidic amino acid as C-terminal amino acid residue.

  • PDF