• 제목/요약/키워드: Cylindrical shape

검색결과 635건 처리시간 0.021초

내부가 유체로 채워진 보강원통쉘의 동적거동 해석 (Dynamic Behavior Analysis of Stiffened Cylindrical Shell Filled with Fluid)

  • 염기언;윤경호;이영신;김종균
    • 대한기계학회논문집A
    • /
    • 제20권9호
    • /
    • pp.2875-2886
    • /
    • 1996
  • This work present the experimental resutls for the free vibration of unstiffened, stiffened cylindrical shell filled with air, half water and full water. The natural frequencies and mode shapes of unstiffened, stiffened cylindrical shell are obtained experimentally also. The natural frequencies of stiffened cylindrical shell were generally highter than those of unstiffened cylindrical shell and natural requencies were decreased as cylindrical shell was filled with water. The effect of circumferential stiffener in the first mode was shown that natural frequency more increased 25% at air environment, 29% at half water environment and 37% at full water than those of unstiffened cylindrical shell, respectively. Also, the natural frequencies were decreased according to the added mass effect of fluid in the shell of unstiffened and stiffened cylindrical shell. The six mode shape results of all cases are simular and given. The natural frequencies are determined for a wide range of parameters : e.g. unstiffened shell, and filled with air, half and full water. The effects of varying the parameters on the free vibration frequencies and mode shapes are discussed.

압축공기에너지 저장 공동의 콘크리트 플러그 최적 형상에 대한 수치해석적 연구 (Numerical Study on the Optimal Shape of Concrete Plug for Compressed Air Energy Storage Caverns)

  • 박도현;김형목;류동우;신중호;송원경
    • 터널과지하공간
    • /
    • 제21권3호
    • /
    • pp.164-173
    • /
    • 2011
  • 본 연구에서는 압축공기에너지 저장 공동의 콘크리트 플러그 최적 형상을 조사하기 위해 플러그 형상에 따른 저장 공동의 안정성을 수치해석적으로 평가하였다. 고려한 플러그 형상은 원통형, 암반에 근입된 원통형, 테이퍼형, 쐐기형이었고, 강도감소법에 의한 안전율과 압축 공기의 압력으로 인해 콘크리트에 발생하는 항복 영역의 부피비를 토대로 안정성을 분석하였다. 안정성 분석 결과, 암반에 근입된 원통형과 테이퍼형 플러그가 원통형과 쐐기형 플러그보다 역학적으로 더 안정한 것으로 분석되었다. 그러나 암반에 근입된 플러그의 경우 플러그와 암반이 접촉하는 부분에서 응력 집중이 발생하여 암반에 근입된 원통형 플러그보다는 테이퍼형 플러그 가 최적의 형상인 것을 확인하였다.

Relationship between the Applied Torque and CCT to obtain the Same Corrosion Resistance for the Plate and Cylindrical Shape Stainless Steels

  • Chang, Hyun Young;Kim, Ki Tae;Kim, Nam In;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제15권2호
    • /
    • pp.58-68
    • /
    • 2016
  • Many industries need the universal standard or technique to obtain the identical CCT regardless of specimen geometries. This study aimed to determine an appropriate applied torque to the cylindrical specimen defining the apparatus and the procedure to measure the temperature of initiating crevice corrosion in tubular shape products such as pipes, tubes and round rods etc; the test method also proved applicable to the plate type specimen. A series of experiments for CCT measurements with the plate type and cylindrical stainless steel specimens of various diameters with different microstructures (austenitic and duplex) and PRENs were conducted to determine the relationship among geometries on CCT. Thus, the apparatus that could measure the CCT of stainless steels with both plate and cylindrical geometries was newly designed. The use of the apparatus facilitated the same CCT value for both geometries only if the specimens were made of the same alloy. The applied torque can be calculated for various diameters of the cylindrical specimens using the following relation; Applied torque, $Nm=-0.0012D^2+0.019D+2.4463$ (D; the diameter of cylindrical specimen, mm). However, upwards of 35 mm diameter cylindrical specimens require 1.58Nm, which is the same torque for the plate type specimen; in addition, this test method cannot be used for cylindrical specimens of less than 15 mm diameter.

Shape factors of cylindrical permeameters

  • Silvestri, Vincenzo;Samra, Ghassan Abou;Bravo-Jonard, Christian
    • Geomechanics and Engineering
    • /
    • 제3권1호
    • /
    • pp.17-28
    • /
    • 2011
  • This paper presents an analytical solution for steady state flow into a close-ended cylindrical permeameter. The soil medium is considered to be uniform, isotropic, and of infinite thickness. Laplace equation is solved by considering rotational symmetry and by using curvilinear coordinates obtained from conformal mapping. The deduced shape factors, which are compared to approximate relationships obtained from both numerical and physical modelling, and idealizations involving ellipsoidal cavities, are proposed for use in field measurements. It is shown that some of the shape factors obtained are significantly different from published values and show a much higher dependence of the rate of flow on the aspect ratio, than deduced from approximate solutions.

3 차원 레이저 보조 밀링을 위한 실린더형 시편의 예열효과에 관한 해석적 연구 (An Analytical Study on the Preheating Effect of Workpiece with Cylindrical Shape for 3-Dimensional Laser-Assisted Milling)

  • 우완식;이춘만
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.173-178
    • /
    • 2015
  • Laser-assisted machining (LAM) is an effective machining method for processing difficult-to-cut materials. Prediction and estimation of preheating effect of the LAM is difficult because of moving heat source. So it is necessary to study the preheating effect of the laser heat source irradiated on the curved surfaces of workpieces of various shape. In this paper, thermal analysis of the LAM for 3-dimentional workpiece with cylindrical shape was performed. The results of this analysis can be applied to obtain the optimal preheating method and path for LAM of 3-dimensional workpiece.

롤러기어캠 기구를 위한 회전운동형 롤러 종동절을 가진 원통 캠의 형상 설계에 관한 연구 (A Study on Shape Design of Cylindrical Cam with Rotating Roller Follower in Roller-Gear-Cam Mechanism)

  • 신중호;강동우;윤호업
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1527-1533
    • /
    • 2002
  • When a mechanism transfers a motion to an intersected shaft, a cylindrical cam mechanism may be the best choice among the mechanisms. The cylindrical cam with a roller follower provides to transfer the motions to the intersect shafts simply without other connecting equipments of the intersect shafts. Typical example may be a roller-gear-cam mechanism. But the shape of the cam must be exactly defined in order to satisfy the conditions for the prescribed motion of the follower. This paper proposes a new method for the shape design of the cylindrical cams and also a CAD program is developed by using the proposed method. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints. The constraint used in the relative velocity method is that the relative velocity must be parallel to a common tangent line at the contact point of two independent bodies, i. e. the cam and the follower. Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. Finally, this paper presents an example in order to prove the accuracy of the proposed methods in this paper and the application of the CAD program"CamDesign".

경사진 그레인 포트를 가진 하이브리드 로켓의 연소 특성 (Investigation of Combustion Characteristics of Hybrid Rocket with Tapered Grain Port)

  • 김재우;김수종;오정수;도규성;소정수;문희장
    • 한국추진공학회지
    • /
    • 제15권2호
    • /
    • pp.8-14
    • /
    • 2011
  • 본 논문에서는 경사진 그레인 포트 형상을 가진 고체 연료를 사용한 하이브리드 로켓의 연소 특성을 실험적으로 연구하였다. $1^{\circ}$의 경사각을 갖는 수렴, 확산 형상 고체 연료는 원통형 연료에 비해 충전 효율이 6.8 % 더 높았다. 수렴 형상의 그레인 포트를 갖는 연료에서는 경사각이 없는 원통형 연료에 비해 동일 산화제 유속 구간에서 후퇴율이 평균 17.5 % 증가하였으나 확산 형상 연료에서는 후퇴율의 차이가 크지 않았다. 또한, 수렴 형상의 연료를 사용한 경우 특성속도 및 특성속도효율이 증가하였으며, 이를 통해 하이브리드 로켓 연료에서 수렴 형상의 그레인 포트가 연소 효율 및 성능을 개선하는데 효과적임을 확인하였다.

원기둥형 물체의 자세 인식 방법 (Posture Estimation Method for a Cylindrical Object)

  • 정규원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.234-239
    • /
    • 2003
  • A cylindrical shape object is widely used as a mechanical part and a water pipe or an oil pipeline which are of cylindrical shape are widely used in the infrastructure. In order to handling such objects automatically using a robot, the posture i.e. orientation in 3D space should be recognized. However, since there is no edge or vertex in the pipe, it is very difficult task for the robot. In this paper in order to guide the robot, two kind of algorithms which find the axis using the measured range data from the robot to the object surface are to be developed. The algorithms are verified using both the simulated range data and the measured one.

  • PDF

ER 마운트 제어에 의한 원통쉘의 진동소음 해석 (Noise and Vibration Analysis of a cylindrical shell by controlling ER mount)

  • 정우진;정의봉;서영수;조현동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.459-463
    • /
    • 2002
  • ER mount can be used instead of rubber mount in cylindrical shell to improve the vibration and noise performance. The noise radiated by cylindrical shell will be reduced by reducing the force transmitted to the cylindrical shell through ER mount. In this paper LQ control theory is used to reduce the transmitted force to the cylindrical shell. The finite element method of cylindrical shell is formulated by NASTRAN and its vibrating shape is calculated in frequency domain. The noise radiated from the cylindrical shell is calculated by the use of SYSNOISE, the boundary element CAE tool. The vibration of the cylindrical shell and radiated acoustic pressure is compared in case of both controlled and uncontrolled ER mount.

  • PDF

슬롯 다이 코팅과 Thermal Reflow방법을 이용한 Cylindrical 마이크로렌즈 제조 (Fabrication of Cylindrical Microlens Using Slot-die Coating and Thermal Reflow Method)

  • 이진영;박종운
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.30-35
    • /
    • 2020
  • A microlens has been fabricated by various methods such as a thermal reflow, hot embossing, diamond milling, etc. However, these methods require a relatively complex process to control the microlens shape. In this work, we report on a simple and cost-effective method to fabricate a cylindrical microlens (CML), which can diffuse light widely. We have employed a slot-die head with the dual plate (a meniscus guide with a protruded μ-tip and a shim with a slit channel) for coating of a narrow stripe using poly(methyl methacrylate) (PMMA). We have shown that the higher the coating gap, the lower the maximum coating speed, which causes an increase in the stripe width and thickness. The coated PMMA stripe has the concave shape. To make it in the shape of a convex microlens, we have applied the thermal reflow method. When the stripe thickness is small, however, its effect is negligible. To increase the stripe thickness, we have increased the number of repeated coating. With this scheme, we have fabricated the CML with the width of 223 ㎛ and the thickness of 7.3 ㎛. Finally, we have demonstrated experimentally that the CML can diffuse light widely, a feature demanded for light extraction efficiency of organic light-emitting diodes (OLEDs) and suppression of moiré patterns in displays.