• 제목/요약/키워드: Cylindrical Heat Exchanger

검색결과 22건 처리시간 0.025초

히트펌프에 연계된 공기-물 직접접촉식 열교환기의 성능 (Performance of Air-Water Direct Contact Heat Exchanger Linked to Heat Pump)

  • 김영화;금동혁;유영선;강연구;김종구;장재경;이형모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.80.2-80.2
    • /
    • 2011
  • Fossil fuel was a major energy resource but the consumption of fossil fuel will decrease gradually because of limited deposits and non-environmental features. In contrast, because the renewable energy resources are infinite and sustainable, their consumption has increased annually. To promote the supply of these infinite natural energy we have to develop more efficient and inexpensive heat recovery system. In this study a simple device was designed as a heat exchanger, that is a direct contact heat exchanger. This heat exchanger was manufactured in cylindrical shape with height of 1,500 mm and diameter of 1,000 mm. To test the efficiency of this heat exchanger, it was connected to the evaporator of heat pump system. During the experimental tests, the humid air of $10{\sim}30^{\circ}C$ was supplied to this air-to-water heat exchanger and then the water flow rate was set to 2500~3500 L/h. Heat recovery rate of this heat exchanger increased in proportion to entering air temperature and water flow rate.

  • PDF

플라스틱 판형 열교환기의 유동 및 열전달 특성에 관한 수치해석적 연구 (A Numerical Study on the Flow and Heat Transfer Characteristics of Plastic Plate Heat Exchanger)

  • 정민호;유성연;한규현;윤홍익
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1366-1371
    • /
    • 2008
  • Four simulation models of plastic plate heat exchangers are designed and simulated. The flat plate type heat exchanger is designed as the reference model in order to evaluate how much thermal performance increases. The turbulence promoter type heat exchanger is fabricated with cylindrical-type vortex generators and rib-type turbulence promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type heat exchanger has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. The flows are assumed as a three-dimensional, incompressible and turbulent model. The standard k-$\varepsilon$ model is used as the turbulent flow modeling, the SIMPLE algorithm is used to treat the coupling between pressure and velocity, and first order upwind scheme is used for discretization of momentum, turbulent and energy. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type.

  • PDF

입자층(粒子層)을 이용한 열교환기(熱交換器) 개발(開發)에 관한 연구(硏究)(III) -고정층(固定層) 열교환기(熱交換器) 내(內)에서의 압력손실(壓力損失)에 관(關)한 연구(硏究) (Development of a Particle Bed Heat Exchanger (III) -An Experimental Study on Pressure Drop in Fixed Bed Heat Exchanger)

  • 양한주;서정윤
    • 설비공학논문집
    • /
    • 제2권3호
    • /
    • pp.226-233
    • /
    • 1990
  • Fixed bed is known to be an effective heat transfer augmentation device which could be applied to heat exchangers. In this study, pressure drop in vertical cylindrical and annular fixed beds with air flowing through was experimentally investigated. Based on the experimental data and some analytical considerations, the demensionless correlation of pressure drop has been determined and shown in empirical forms. In particular, the experimental equation for the pressure drop was derived using the particle diameter and the bed diameter as variables, which would be more practical and useful in the design of heat transfer devices, instead of void fraction which had been used previously as the major variables by others. The present empirical equation obtained for the cylindrical fixed bed were found to be applicable also to an annular fixed bed when the concept of effective diameter was introduced.

  • PDF

Plate & Shell 열교환기내에서 R-718의 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer and Pressure Drop Characteristics for R-718 in Plate and Shell Heat Exchanger)

  • 강석현;서무교;김영수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.270-275
    • /
    • 2000
  • In this study, heat transfer and Pressure drop characteristics for R-718 in the plate and shell heat exchanger (P&SHE) investigated experimentally. The plates are circular and welded into a stack which fits into a cylindrical shell in P&SHE. Although apparently very different from rectangular the compact brazed plate heat exchanger (CBE), the underlying flow passage structure through the P&SHE is the same as in the CBE. The R-718 between plate side and shell side was performed a counterflow heat exchange. Heat transfer characteristic of R-718 were measured for turbulent flow in P&SHE by using wilson plot technique. Heat transfer experiment Ivas performed in the $200{\leq}Re{\leq}500$ regime and Pressure drop experiment was performed in the $150{\leq}Re{\leq}1600$ regime. The purpose of this study is to investigate heat transfer and friction factor correlations for R-718 in P&SHE and to offer fundamental data for experiment

  • PDF

A Numerical Study on Performance of Air-to-Air Plastic Plate Heat Exchanger

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik;Kang, Hyoung-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.52-60
    • /
    • 2009
  • The purpose of this research is to develop high efficiency plastic plate heat exchangers which can be substituted for conventional aluminum plate heat exchangers. Four simulation models of plastic plate heat exchangers are designed and simulated: that is, flat plate type, turbulent promoter type, corrugate type and dimple type heat exchanger. The flat plate type is designed as the reference model in order to evaluate how much thermal performance increases. The turbulent promoter type is fabricated with cylindrical-type vortex generators and rib-type turbulent promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. Numerical simulation is carried out using the FLUENT code. The flows are assumed as a three-dimensional, incompressible and turbulent model. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type. The tendency of numerical simulation results is in good agreement with that of the experimental results.

입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(IV) -고정층(固定層) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究) (Development of a Particle Bed Heat Exchanger (IV) -An Experimental Study on Heat Transfer Characteristics of Fixed Bed Heat Exchanger)

  • 양한주;서정윤
    • 설비공학논문집
    • /
    • 제2권3호
    • /
    • pp.234-242
    • /
    • 1990
  • In this study, heat transfer characteristics of vertical fixed bed with air flowing through were experimentally investigated. The experiments were conducted for cases where heat was transfer steady state conditions from an immersed cylindrical heated to the surrounding fixed ved of steel balls. Based on the experimental data, the optimum conditions for heat transfer augmentation have been determined and shows in empirical forms. For the same power loss, comparison of heat transfer effect between the fixed bed and single phase forced convection device indicates that both miniaturization of heat exchange device and heat transfer augmentation at low flow velocity are possible by application of the fixed bed to heat exchangers. The present results could provide a useful design information for the heat exchangers where fixed beds are used.

  • PDF

수평식 셸-튜브형 잠열축열조의 축열 및 방열특성에 관한 실험적 연구 (An Experimental Study on Heat Storage and Heat Recovery Characteristics of a Latent Heat Storage Tank with Horizontal Shell and Tube Type)

  • 권영만;서해성;모정하
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.50-59
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat exchanger consisted of horizontal cylindrical capsules with a staggered tube bank layout. Based on the obtained data, the effects of flow rate and inlet fluid temperature on the melting time and heat storage rates were examined. It is found that the melting time decreased with increase of the flow rate and the inlet temperature. Results also show that at the initial stage of heat transfer the heat storage rate represents the maximum value and rapidly decreases.

원형튜브내에서 이동중인 고체입자층의 열전달 특성연구 (Heat Transfer to a Downward Moving Solid Particle Bed Through a Circular Tube)

  • 이금배;박상일
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1551-1558
    • /
    • 1994
  • An experiment was conducted to investigate whether an equation of heat transfer coefficient derived form energy equation of two-phase plug flow can be actually applied to the industrial field. The heat is constantly transfered to the sand beds from the wall of heat exchanger while the sand moves down through cylindrical heat exchanger by gravity from feed hooper. To increase heat transfer, turbulators such as glass ball and steel pipe packings were used. In addition, the experiment in the case of fluidizing the sand beds was also carried out. The temperatures of the sand beds and the wall were measured along the heat exchanger axis. The density and porosity of the sand beds were also measured. The deviations of the mean velocity of sands from the velocity on the wall surface because of the slip conditions on the wall were negligible (within 3%). The heat transfer coefficients when the turbulators were used and when the sand beds were fluidized were found to be much greater than those of the plain plug flow.

저 NOx 응축형 가스보일러 개발에 관한 연구(II) -원통형 열교환기 설계 및 응축보일러 성능- (A Study on the Development of Low NOx Condensing Gas Boiler(II) -Design of Heat Exchanger and Performance of Boiler-)

  • 이창언;금성민;정영식
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.244-251
    • /
    • 2001
  • This paper describes a design study of heat exchanger assembly to be used for low NOx condensing gas boiler. In this study, specifications of each heat exchanger components(upper and lower fin-type HEX, coil-type HEX, baffle) were investigated experimently by using model apparatus and analytical model, and comprehensive performances of the pilot gas boiler were examined. As a result, the boiler efficiency for heating and hot-water reached 90% and 94%, respectively. NOx and CO emission are less than 50ppm and 200ppm (0$_2$0% basis), respectively, which are very improved results than those of conventional bunsen-type boiler. But it is considered that supplementary investigations necessary for CO emission improvement and optimum design with boiler capacity.

내부 열용량을 고려한 수직 지중열교환기의 3차원 수치 모델 개발 (Development of a Three-Dimensional Numerical Model of the Vertical Ground-Coupled Heat Exchanger Considering the Effects of the Thermal Capacity)

  • 김의종
    • 설비공학논문집
    • /
    • 제28권7호
    • /
    • pp.293-298
    • /
    • 2016
  • A three-dimensional (3D) numerical model of the vertical ground-coupled heat exchanger is useful for analyzing the modern ground source heat pump system. Furthermore, a detailed description of the inner side of the exchanger allows to account for the effects of the thermal capacity. Thus, both methods are included in the proposed numerical model. For the ground portion, a FDM (Finite Difference Method) scheme has been applied using the Cartesian coordinate system. Cylindrical grids are applied for the borehole portion, and the U-tube configuration is adjusted at the grid, keeping the area and distance unchanged. Two sub-models are numerically coupled at each time-step using an iterative method for convergence. The model is validated by a reference 3D model under a continuous heat injection case. The results from a periodic heat injection input show that the proposed thermal capacity model reacts more slowly to the changes, resulting in lower borehole wall temperatures, when compared with a thermal resistance model. This implies that thermal capacity effects may be important factors for system controls.