• Title/Summary/Keyword: Cylindrical Body

Search Result 199, Processing Time 0.025 seconds

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

Optimization of Process Condition for Fe Nano Powder Injection Molding

  • Oh, Joo Won;Lee, Won Sik;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.223-228
    • /
    • 2017
  • Nanopowders provide better details for micro features and surface finish in powder injection molding processes. However, the small size of such powders induces processing challenges, such as low solid loading, high feedstock viscosity, difficulty in debinding, and distinctive sintering behavior. Therefore, the optimization of process conditions for nanopowder injection molding is essential, and it should be carefully performed. In this study, the powder injection molding process for Fe nanopowder has been optimized. The feedstock has been formulated using commercially available Fe nanopowder and a wax-based binder system. The optimal solid loading has been determined from the critical solid loading, measured by a torque rheometer. The homogeneously mixed feedstock is injected as a cylindrical green body, and solvent and thermal debinding conditions are determined by observing the weight change of the sample. The influence of the sintering temperature and holding time on the density has also been investigated. Thereafter, the Vickers hardness and grain size of the sintered samples have been measured to optimize the sintering conditions.

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

A Study on Dynamic Characteristics Analysis of Spindle Unit for Two-for-One Twister (투포원 연사기용 스핀들 유니트의 동특성 해석에 관한 연구)

  • Kim, Gwang-Yeong;Kim, Jong-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.127-139
    • /
    • 1997
  • Two-for-one twister is a kind of textile machine and makes special fancy yarn which is twisted two times per one revolution in order to increase tensile strength and wear resis-tance of yarn. Spindle mechanism has to be stable and continuous motion in high speed revolution, and then optimal design is necessary to analyze dynamic characteristics of spindle unit. Spindle unit is consist of blade and rotary disc that are cylindrical body of revolution. For analysis of the dynamic characteristics of spindle unit, transfer matrix method is used and a numerical code SPINDLE also. Torsion and natural bending frequency of the spindle unit are examined. Its displacement mode is studied in function of variable revolutions.

  • PDF

A Study on the Development of Friction Hinge with Automatic Closed Function (자동 닫힘 기능을 갖는 마찰힌지 개발에 관한 연구)

  • Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.107-114
    • /
    • 2014
  • A friction hinge system which moves without power was designed and developed using the principle of friction force, which is caused by interference between the inner diameter of a silicon cap and the outer diameter of a cylindrical roller bearing with one-way rotation in a counterclockwise direction. The system was applied to the lid of buffet ware, which moved up by external force and moved down by gravitational force. However, design conditions which included a rotation angle of the hinge of more than 80 degrees and a closing time of more than 20 seconds were required when the lid of the buffet ware closed due to gravitational force. The design safety of the friction hinge body connected to the lid of the buffet ware from the hinge system was checked on the basis of structural, fatigue and thermal analyses. The material of the shaft, cap and flange among the hinge elements was changed to polyethylene from steel to reduce the weight of the friction hinge system. An injection molding simulation was performed and injection molds of the shaft, cap and flange were created. The weight of the hinge system was decreased from 805g to 219g.

Ride Comfort Evaluation of Electronic Control Suspension Using a Magneto-rheological Damper (MR 댐퍼를 이용한 전자제어 현가장치의 승차감 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.463-471
    • /
    • 2013
  • This paper presents design and control of electronic control suspension(ECS) equipped with controllable magnetorheological(MR) damper for passenger vehicle. In order to achieve this goal, a cylindrical type MR fluid damper that satisfies design specification of a middle-sized commercial passenger vehicle is proposed. After manufacturing the MR damper with design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of a conventional damper. A quarter-vehicle MR ECS system consisting of sprung mass, spring, tire, controller and the MR damper is established in order to investigate the ride comfort performances. On the basis of the governing equation of motion of the suspension system, five control strategies(soft, hard, comfort, sport and optimal mode) are formulated. The proposed control strategies are then experimentally realized with the quarter-vehicle MR ECS system. Control performances such as vertical acceleration of the car body and tire deflection are evaluated in frequency domains on random road condition. In addition, performance comparison of WRMS(weighted root mean square) of the quarter-vehicle MR ECS system on random road are undertaken in order to investigate ride comfort characteristics.

A Study on the Dance Costume of Greece (그리이스 무용 형식에 관한 연구)

  • 임상임
    • Journal of the Korean Home Economics Association
    • /
    • v.36 no.10
    • /
    • pp.119-130
    • /
    • 1998
  • This is on the dance costume of ancient Greece. The present study classified the characteristics of Greek dance and dance costume according to the silhouette, quality of material, color and ornaments. Materials of the study are the pictures and figures presented in literatures, sculptures, crockeries, murals, coins. The dances of Greece can be classified into religious dance, educational dance, recreational dance, dramatic dance and various forms of dance on each dances were developed. Especially, it is the greatest character that Greeks gave dances educational value and created composit art including song, lines and dance. As dance costume, Himation, Chiton, Chlamys which Greeks generally wore were widely worn. Also, the beauty of dance costume was maximized by the changes of basic costumes and development of various ways of wearing. Especially, professional dancers wore costumes shorter than knee-length ones forming a A-line silhouette different from a cylindrical one. Thin cloth revealing body silhouette such as fiax hemp, linen, silk were used as materials of dance costumes. As for colors, white was mainly used, But orange, blue and green were used, too. They wore band, scarf, bonnet on the head and seldom used any ornaments except for fibula. They wore the same sandals which Greeks wore, Crepis, front-heeled shoes which is thought to be the origin of modern ballet shoes for the technique of toe in dance. As mentioned above, as the dance costume of Greece were mainly worn as the similar forms of the dance costume of Greeks, various forms of costumes were worn with the development of dance and bold ways of wearing and silhouette were developed unlike the costume of common people.

  • PDF

A finite element analysis of a new design of a biomimetic shape memory alloy artificial muscle

  • Jaber, Moez Ben;Trojette, Mohamed A.;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.479-496
    • /
    • 2015
  • In this work, a novel artificial circular muscle based on shape memory alloy (S.M.A.) is proposed. The design is inspired from the natural circular muscles found in certain organs of the human body such as the small intestine. The heating of the prestrained SMA artificial muscle will induce its contraction. In order to measure the mechanical work provided in this case, the muscle will be mounted on a silicone rubber cylindrical tube prior to heating. After cooling, the reaction of the rubber tube will involve the return of the muscle to its prestrained state. A finite element model of the new SMA artificial muscle was built using the software "ABAQUS". The SMA thermomechanical behavior law was implemented using the user subroutine "UMAT". The numerical results of the finite element analysis of the SMA muscle are presented to shown that the proposed design is able to mimic the behavior of a natural circular muscle.

On the Growth of the Surface Area of Isolated Young Trees, Alnus tinctoria Sargent (산오리나무 고립목의 표면적성장에 대하여)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.16 no.1_2
    • /
    • pp.1-5
    • /
    • 1973
  • Six young trees of Alnus tinctoria grown in isolation, each having different growing stage, were selected and the surface area of their roots, stems and leaves was determined. Each of the roots of more than 0.2mm in diameter and stems was cut at intervals of 10cm and their surface area was calculated with 2$\pi$rl from the average diameter (2r) of both sections (upper and lower) by making cylindrical estimation of the cut pieces. The leaf area measured was only one side area, and the volume of cut piece and amount of dry matter of each organ were also measured. The percentage to the surface area of the whole plant body by each organ was 4-12% in root, 7-9% in stem and 69-89% in leaf, respectively. There was relatively a little individual difference. However, the surface area ratios of root and stem showed a slightly increasing tendency while that of leaf decreasing according to the growing stage. The ratio of sum leaf area index (LAIi) was 2.3-4.0$m^2$/$m^2$-and that of the surface area index(SaIi) was 0.16-0.33$m^2$/$m^2$, respectively. It has been known that the stem surface area(SAI) to the leaf area index(LAI) is within the range of 31-53%, but the SAIi is within the range of 8-11% of the LAIi.

  • PDF