• Title/Summary/Keyword: Cylindrical Array SONAR

Search Result 16, Processing Time 0.029 seconds

Structural Response and Reliability of a Cylindrical Array Sensor due to Underwater Explosion (수중폭발에 의한 원통형 배열센서의 구조 응답 및 안정성 해석)

  • Jeon, Soo-Hong;Hong, Chin-Suk;Jeong, Weui-Bong;Seo, Hee-Seon;Cho, Yo-Han
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper establishes a modeling and simulation procedure for structural response and reliability of a cylindrical array sensor on submarines under the shock generated by underwater explosion. The structural reliability of SONAR is important because the submarine could get out of combat ability by the structural damage of the SONAR upon explosion. A cylindrical array sensor was first modeled using the finite element method. Modal analysis was then performed for the check of the reliability of the modeling. The shock resistance simulations were performed for the responses to the structural shock waves and for the responses to the directly applied underwater shock waves, according to BV-043 and MIL-STD-901D, respectively. The stresses of the structure were evaluated with von-Mises scheme. Vulnerable regions were exposed through mapping the maximum stress to the structural model. Maximum stress of the SONAR was compared with the yield stress of the material to examine the structural reliability.

A Study on the Acoustic Baffle to Reduce Ghost Target According to Structure behind Cylindrical Array Sensor (원통형 배열센서 후면 구조물에 의해 발생하는 허위 표적 감소를 위한 음향 배플 연구)

  • Seo, Young Soo;Kim, Dong Hyun;Kim, Jin Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.440-446
    • /
    • 2015
  • Acoustic signal is emitted from a vessel and received by a cylindrical array sensor at some distance from the vessel. Acoustic signal is the source for a cylindrical array sensor which is designed to detect the acoustic signal. Cylindrical array sensors seldom have an ideal hydrodynamic shape and are not sufficiently robust to survive without some protection and they are normally housed in a sonar dome. Reflected signals by some structure inside a sonar dome make unwanted signals. Therefore, an acoustic baffle is used to minimize unwanted signals. The performance of the acoustic baffles can be determined from the acoustic numerical analysis at the design stage. In this study, finite element method was used to analyze the acoustic field around the cylindrical array sensor and baffle effects. The baffle performance can be defined the echo reduction. To show the baffle performance, the specimens were made for pulse tube test and echo reductions were measured during the test. In this paper, the effect of echo reduction of the acoustic baffle was discussed.

Acoustic Characteristics Analysis of Cylindrical Array for the Directional and Omni-directional mode Using the Boundary Element Method (경계요소법을 이용한 원통형 배열센서의 지향성/무지향성 모드에 대한 음향특성해석)

  • Lee, Jung-Min;Seo, Hee-Seon;Cho, Yo-Han;Baek, Kwang-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.922-927
    • /
    • 2009
  • The transducers used in active sonar on surface ships are packed in a specific geometry in the array drum in order to meet the requirements such as the source level, directional beam pattern, etc. This paper describes the acoustic characteristics of the cylindrical array which is based on a 64 vertical staves arrangement, each stave composed 5 independent transducers. Firstly, the single transducer on the rigid baffle in the water is analyzed with the Finite Element Method. From the result of the FE analysis nodal velocities on the radiation surface is calculated and used with the boundary conditions of the transducers mounted on the array drum. Then the acoustic pressure is calculated in the field points using the Boundary Element Method and the other acoustic informations, the source level, beam pattern, near field and far-field distance, were acquired.

Vibration Analysis of Water-loaded Cylindrical Array Structures (원통형 배열 구조물의 접수진동 해석)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Seo, Hee-Seon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.175-182
    • /
    • 2009
  • This paper summarizes a solution procedure for a large cylindrical structure mounted underneath a ship as a sonar. Vibration analysis of the water loaded structure is required to enhance the structural reliability as well as acoustic performance of the sonar. It is, however, often very difficult to solve such structures since they have many DOFs, considering the frequency of interest and the water-loading. The mode mapping method is proposed and verified to take into account the water-loading with the minimum DOF for the analysis. The cyclic symmetric method is then reviewed to show how the eigen properties of the full model can be obtained from the representative segment model. The solution procedure is finally proposed and applied successfully for a simplified water-loaded cylindrical array structure.

Modified Multiple Target Angle Tracking Algorithm with Efficient Equation for Angular Innovation (효율적인 방위각 이노베이션 계산식을 가진 수정된 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • Ryu et al. proposed a multiple target angle-tracking algorithm with efficient equation for angular innovation, and Ryu's algorithm has good feature that it has no data association problem. Ryu's algorithm is only applicable to linear sensor array, because its efficient equation for angular innovation is derived in case of using a linear sensor array. In a many fields studying multiple target angle-tracking, the various shapes of sensor array are used. In sonar, a cylindrical sensor array is as much used as a linear sensor array, a example is hull mounted sonar. In this paper, Ryu's algorithm is modified to be applicable to cylindrical sensor array, and the tracking performance of a modified algorithm is verified by various computer simulations.

Vibration Analysis of Waterloaded Cylindrical Aarray Structures (주기대칭법을 이용한 원통형 배열 구조물의 접수진동 해석)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Seo, Hee-Seon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1054-1059
    • /
    • 2007
  • This paper summarized a solution procedure for a large cylindrical structure mounted underneath a ship as a sonar. Vibration analysis of the water loaded structure is required to enhance the structural reliability as well as acoustic performance of the sonar. It is, however, often very difficult to solve such structures since they have many DOFs, considering the frequency of interest and the waterloading. The cyclic symmetric method is firstly reviewed to show how the eigen properties of the full model can be obtained from the representative segment model. The mode mapping method is then proposed and verified to take into account the waterloading with the minimum DOF for the analysis. The solution procedure is finally proposed and applied for a waterloaded cylindrical array structure.

  • PDF

Design of SONAR Array for Detection of Bottoming Cylindrical Objects (착저 원통형 물체 탐지를 위한 소나 어레이 설계)

  • Kim, Sunho;Jung, Jangwon;On, Baeksan;Im, Sungbin;Seo, Iksoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.15-21
    • /
    • 2017
  • In the active SONAR system, various studies have been carried out to enhance the resolution of a received signal. In order to obtain higher resolution for detecting a bottoming cylindrical object, the design of a planar array for SONAR is investigated in this paper. It is necessary to employ planar structures for SONAR array to obtain narrower beam pattern which gives high resolution. In this study, the transmit frequency of each acoustic transducer, which consists of an array is 13 kHz. For efficient detection of a target of an asymmetric size, the concept of areal angle is applied, which considers resolution according to both azimuth and elevation angles in array design. In the design, the areal angle is first investigated to satisfy the resolution requirements, and then based on the value of areal angles, the azimuth angle and the elevation angle are calculated respectively to design an array.

Dynamic Response of Hull Mounted Cylindrical Array Sonars to Shocks (선체부착형 원통형 배열 소나의 선체충격에 의한 응답)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Seo, Hee-Seon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.146-154
    • /
    • 2009
  • Dynamic response of a hull mounted sonar(HMS) to shocks transmitted through hull structures is analyzed and then the structural reliability of the sonars is evaluated. Finite element model of the hull mounted sonar is established and the transient responses to the shock is calculated using MSC.NASTRAN. According to BV043, the maximum allowable accelerations at the foundation of the sonar are converted from the shock spectra allowable for HMS. They are applied vertically and horizontally, respectively, using the large mass method. The structural reliability is evaluated by comparing the von-Mises stresses with the material yield stress. The drum for sensors shows a high reliability owing to mounts by which the shock waves from the base structure are well protected. However, the mounts between the base structure and the drum to mount sensors show a high stress intensity. The base structure also reveals a high stress intensity at the connection points to the hull.

Conceptual Design of Cylindrical Hydrophone Arrays for Stabilization of Receiving Characteristics under Ocean Ambient Noise (해양 배경 소음 하의 수신 특성 안정화를 위한 원통형 하이드로폰 배열의 개념 설계)

  • Noh, Eunghwy;Lee, Hunki;Ohm, Won-Suk;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.200-209
    • /
    • 2015
  • An underwater sound surveillance system detects and tracks enemy ships in real-time using hydrophone arrays, in which seabed-mounted sensor arrays play a pivotal role. In this paper the conceptual design of seabed-mounted, cylindrical hydrophone arrays for use in shallow coastal waters is performed via finite element calculations. To stabilize the receiving characteristics under the ocean ambient noise, a technique for whitening the ambient noise spectrum using a metal baffle is proposed. Optimization of the array configuration is performed to achieve the directivity in the vertical and azimuthal directions. And the effects of the sonar dome shape and material on the structural vibration and sound scattering properties are studied. It is demonstrated that a robust hydrophone array, having a sensitivity deviation less than 4 dB over the frequency range of interest, can be obtained through the whitening of the ambient noise, the optimization of the array configuration, and the design of acoustically transparent sonar domes.

A broadband detection algorithm using cross-correlation of two split beams for cylindrical array sonar (원통형 배열 소나를 위한 두 개의 분리 빔의 상호상관을 이용한 광대역탐지 기법)

  • Kwak, ChulHyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.300-304
    • /
    • 2017
  • In a cylindrical sonar, a conventional broadband energy detector has limitations in the separation of adjacent targets. In this paper, a broadband detection algorithm using cross-correlation is applied to the cylindrical sonar to improve the bearing resolution. The proposed algorithm uses split beamforming before broadband detection processing using cross-correlation to generate half beams. The time delay obtained from the peak of correlation between half beams is used to estimate the bearing of target. Simulations demonstrate the improved performance of the proposed algorithm against the conventional algorithm.