• 제목/요약/키워드: Cylinder Wake

검색결과 266건 처리시간 0.026초

Wake dynamics of a 3D curved cylinder in oblique flows

  • Lee, Soonhyun;Paik, Kwang-Jun;Srinil, Narakorn
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.501-517
    • /
    • 2020
  • Three-dimensional numerical simulations were performed to study the effects of flow direction and flow velocity on the flow regime behind a curved pipe represented by a curved circular cylinder. The cylinder is based on a previous study and consists of a quarter segment of a ring and a horizontal part at the end of the ring. The cylinder was rotated in the computational domain to examine five incident flow angles of 0-180° with 45° intervals at Reynolds numbers of 100 and 500. The detailed wake topologies represented by λ2 criterion were captured using a Large Eddy Simulation (LES). The curved cylinder leads to different flow regimes along the span, which shows the three-dimensionality of the wake field. At a Reynolds number of 100, the shedding was suppressed after flow angle of 135°, and oblique flow was observed at 90°. At a Reynolds number of 500, vortex dislocation was detected at 90° and 135°. These observations are in good agreement with the three-dimensionality of the wake field that arose due to the curved shape.

정지 및 회전하는 원주에 의한 난류후류의 응집구조 (An Investigation of the Coherent Structures in Turbulent Wake Past a Stationary and Rotating Cylinder)

  • 부정숙;이종춘
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1310-1321
    • /
    • 1994
  • Turbulent coherent structures in the intermediate wake of a stationary and rotating cylinder, spin rate S=0.7, situated in a uniform were experimentally investigated using a conditionalphase average technique. Measurements were carried out at a section of 8.5 diameters downstream form the center of cylinder and a Reynolds number of $Re=6.5{\times}10^{3}.$/TEX> The phase averaged velocity and velocity vector fields, contours of vorticity, turbulent intermittency function and velocity fluctuation energy are presented and discussed in relation to the large scale coherent structures by Karman vortices that shed periodically from the cylinder. Coherent wake structures of the rotating cylinder is almost identical with stationary cylinder, but the lateral displacement and shrinkage of turbulent wake region is occured by rotation. Rotation of the cylinder result in that the deflection of wake center to deceleration region(Y/D${\simeq}-0.3)$ and the decrease of mean velocity defect(10%), vorticity strength of large scale structures(19%), total velocity fluctuation energy(12%).

균일류의 회전원주 제어에 의한 유동 및 공력 제어효과에 관한 연구 (Control effects of the flow and the aerodynamic force around the downstream cylinder by a spinning upstream cylinder in uniform flow)

  • 부정숙;양종필;김창수;신영곤
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.346-359
    • /
    • 1998
  • The aerodynamic forces and wake structure of the non-rotating downstream circular cylinder, of which the uniform freestream flow is interfered with another spinning upstream cylinder having the same diameter that is located upstream in a line have been investigated experimentally. When the spin rate of the downstream cylinder defined as the ratio of tangential surface velocity of the spinning cylinder to the freestream velocity increases gradually from zero to 1.4, the change of surface pressure distribution, aerodynamic forces of the non-rotating downstream cylinder were measured in case of several distance ratios of 1.5, 3.0, and 4.5 defined as the ratio of distance between the centers of two cylinders to the diameter. The wake flow patterns behind the cylinder were also investigated in each case. From the present experiments, it has been found that the spin rate significantly influences the aerodynamic forces and near-wake flow phenomena of the downstream cylinder in such a way that the drag increases as the spin rate and distance ratio increase and the wake width increases as the distance ratio increases.

열성층유동장에 놓인 원주후류의 특성에 대한 연구(2)(Part 2. 성층후류의 난류유동특성) (A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow(II)(Par II. Turbulent Characteristics of Stratified Wake))

  • 김경천;정양범;강동구
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1322-1329
    • /
    • 1994
  • The effect of thermal stratification on the stratified flow past a circular cylinder was examined in a wind tunnel. Turbulent intensities, the rms values of temperature and turbulent convective heat flux as well as the velocity and temperature profiles in the cylinder wake with a strong thermal gradient of $200^{\circ}C/m$ were measured by using a hot-wire and cold-wire combination probe. It is found that the temperature field affects as an active contaminant, so that the vertical growth of vortical structure is suppressed and the strouhal number decreases with increasing the extent of stratification. And also, the wake structure can not sustain their symmetricity about the wake centerline and vertical turbulent motion dissipates faster than that of the neutral case when such a strong thermal gradient is superimposed. It is evident that the turbulent mixing in the upper half section is stronger than that of the lower of the wake in a stably stratified flow because the turbulent intensities and convective heat flux in the upper half section are larger than those of the lower half of the wake.

Flow visualization and analysis of wake behind a sinusoidal cylinder

  • Nguyen A.T.;Lee S. J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.31-34
    • /
    • 2003
  • The near wake behind a sinusoidal cylinder has been investigated quantitatively using hot-wire anemometer and qualitative. The mean velocity and turbulence intensity were measured in streamwise and spanwise direction. The results show that the wake in the saddle plane has a longer vortex formation region and rapid reversed flow than that in nodal plane. The elongated vortex formation region of sinusoidal cylinder is related with drag reduction. In addition, the flow visualized with particle tracing method support the flow characteristics of sinusoidal cylinder measured by hot-wire.

  • PDF

圓柱 뒤의 2 次元 後流 流動 特性 (Characteristics of Two-Dimensional Turbulent Wake Flow behind a Circular Cylinder)

  • 부정숙;윤순현;이종춘;강창수
    • 대한기계학회논문집
    • /
    • 제9권5호
    • /
    • pp.555-563
    • /
    • 1985
  • 본 논문에서는 원주(circular cylinder)가 균일속도장에 놓였을 때의 2차원적 인 난류후류유동 특성을 실험에 의해 조사하고, 근접후류에서의 주기적인 대규모 운동 에 의한 코히어런트구조가 하류에서 자체유사(selfpreserving)로 되어 가는 데 있어서 의 난류변동성분에 관한 해석을 위해 확률밀도함수, 자기상관계수, 파워스펙트럼 등과 같은 통계적 처리기법을 도입하고자 한다.

축 방향으로 나열된 관통홀을 구비한 원형 실린더 주위 유동 (Flow around a circular cylinder with axially arranged holes)

  • 김지희;채석봉;김주하
    • 한국가시화정보학회지
    • /
    • 제18권1호
    • /
    • pp.59-66
    • /
    • 2020
  • In the present study, we experimentally investigated the flow around a circular cylinder with axially arranged holes (AAH). The wind-tunnel experiment was performed at Re = 3.2 × 104 while varying the angle of attack (α) from 0° to 90°. At low α, the passive jet from the AAH pushes near wake to the downstream, increasing the wake formation length. On the other hand, at high α, blowing and suction through AAH occurs alternatively, rather decreasing the wake formation length. The passive jet generated by AAH can effectively control not only the wake where AAH is located, but also the wake between holes. As a result, the AAH reduce the drag on the cylinder up to 23.8% at low α but rather increase the drag at high α, as compared to that on a smooth cylinder.

PIV기법을 이용한 정사각 실린더의 근접후류에 관한 연구 (I) - 평균유동장 - (A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry ( I )- Mean Flow Field -)

  • 이만복;김경천
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1408-1416
    • /
    • 2001
  • Mean flow fields in the near wake of a square cylinder have been studied experimentally using a Particle Image Velocimetry (PIV). Ensemble-averaged velocity fields are successfully measured fur the square cylinder wake including the reverse flow region which arises many difficulties in accurate measurement by using conventional techniques, Experiments are performed at two free stream velocities of U$\_$$\infty$/ = 1.27m/s and 3.03m/s. The corresponding Reynolds numbers based on the free-stream velocity and cylinder diameter are 1600 and 3900, respectively. The intensity of free-stream turbulence is less than 1%, the blockage ratio (D/H) is 6.6% and the aspect ratio (W/D) is 40. The effect of Reynolds number on the near wake of a square cylinder has been investigated by the global mean velocity and instantaneous velocity fields. The most striking feature is that the length of the recirculating region increases with increasing Reynolds number, which turns out totally reverse trend compared with those observed in the circular cylinder wake at the same range of Reynolds number. Fer the case of higher Reynolds number, the mean velocity data agree well with those of relevant existing data obtained at much higher Reynolds numbers, which reflects the general aspect of sharp-edged bluff body wake.

열성층유동장에 놓인 원주후류의 특성에 대한 연구 (4) -가열량의 변화에 따른 원주후류에 대하여- (A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (IV) -On the Cylinder Wake with Various Heating Rates-)

  • 김경천;정양범
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1340-1350
    • /
    • 1995
  • The effects of thermal stratification on the flow past a heated circular cylinder with various heating rates were examined in a wind tunnel. Turbulent intensities, r.m.s.values of temperature and turbulent convective heat flux distributions in the cylinder wakes with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. The phase averaging method was also used to estimate coherent contributions to the turbulent flow field in the near wake. The results show that the scalar mixing process is very different according to the mean temperature fields especially in the upper part of the wake. The coherent structure of the temperature field makes a large contribution to the time mean value like velocity components. However, the coherency of the temperature fluctuation is very different with the change of mean temperature fields, though the velocity coherent motions are quite similar in all experimental conditions.

가열된 원주후류의 열성층 영향에 대한 연구 (A Study on the Effect of Thermal Stratification of a Heated Cylinder Wake)

  • 김경천;정양범
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2454-2462
    • /
    • 1994
  • The effects of thermal stratification on the flow of a stratified fluid past a heated circular cylinder were examined in a wind tunnel. Turbulent intensities, rms values of temperature and turbulent convective heat flux distributions in the heated cylinder wake with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. A phase averaging method was also used to estimated coherent motion in the near wake. It is found that the vertical turbulent motion in the stably stratified flow case dissipates faster than that of the neutral case, i.e., vertical growth of vortical structure is suppressed under the strongly stratified condition. The coherent motion of temperature makes a large contribution like velocity coherent motion. However, the coherent motions of temperature fluctuation become very different with the change of experimental conditions, though the velocity coherent motions are quite similar in all experimental conditions.