• Title/Summary/Keyword: Cylinder Speed

Search Result 747, Processing Time 0.03 seconds

The Study for Improving the Combustion in a Common-rail Diesel Engine using Swirl Groove Piston (Swirl Groove Piston에 의한 커먼레일 디젤기관의 연소성 향상에 관한 고찰)

  • Bang, Joong-Gheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.145-151
    • /
    • 2010
  • The performance of a direct-injection diesel engine often depends on the strength of swirl or squish, the shape of combustion chamber, the number of nozzle holes, etc. This is natural because the combustion in the cylinder was affected by the mixture formation process. Since the available duration to make the mixture formation of air-fuel is very short, it is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this paper, the combustion process of a common-rail diesel engine was studied by employing two kinds of pistons. One has several grooves with inclined plane on the piston crown to generate swirl during the compression and expansion strokes in the cylinder in order to improve the atomization of fuel. The other is a toroidal piston, generally used in high speed diesel engines. To take photographs of flame and flaming duration, a four-stroke diesel engine was remodeled into a two-stroke visible single cylinder engine and a high speed video camera was used.

The Study for Improving the Combustion in a D.I. Diesel Engine using Multi-cavity Piston (Multi-cavity Piston에 의한 디젤기관의 연소성 향상에 관한 연구)

  • Park, Chul Hwan;Bang, Joong Cheol
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.13-20
    • /
    • 2015
  • The performance of a direct-injection diesel engine often depends on the strength of swirl or squish, the shape of combustion chamber, the number of nozzle holes, etc. This is natural because the combustion in the cylinder was affected by the mixture formation process. Since the available duration to make the mixture formation of air-fuel is very short, it is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this paper, the combustion process of a common-rail diesel engine was studied by employing two kinds of pistons. One has several cavities on the piston crown to intensify the squish during the compression stroke in order to improve the atomization of fuel, we call this multi cavity piston in this paper. The other is a toroidal single cavity piston, generally used in high speed diesel engines. To take photographs of flame and flaming duration, a four-stroke diesel engine was remodeled into a two-stroke visible single cylinder engine and a high speed video camera was used.

Comparison of Cushion Performance on Parameter Changes in High Speed Pneumatic Cylinder Driving System (공기압 실린더 고속 구동시스템에서 파라미터 변화에 따른 쿠션성능 비교)

  • Kim, Do Tae;Jang, Zhong Jie
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.54-59
    • /
    • 2015
  • Due to the tendency to use high speed pneumatic cylinders to improve productivity, cushioning devices are adopted to decelerate the piston motion of pneumatic cylinders to reduce noise, vibration, and impact. This paper presents a comparison of the cushion characteristics of a high speed pneumatic cylinder with a relief valve type cushioning device. The system parameters selected are the damping coefficient, Coulomb friction, heat transfer coefficient, and cracking pressure of the relief valve in the air cushioning device. The integral of the time multiplied square error (ITSE) is used to quantitative measure the cushioning performance to assess the effect of varying these. The cushioning performance achieved good results when the ITSE is a minimum value. In a comparison of the piston displacement and velocity with the variations in system parameters, the heat transfer coefficients are not as significantly affected as the other. Also, the cracking pressure of the relief valve is mainly affected by the pressure and temperature in the cushion chamber.

An Study on the Transitional Flows in a Concentric Annulus with Rotating Inner Cylinder (안쪽축이 회전하는 환형관내 천이 유동 연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.45-50
    • /
    • 2001
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully developed flow of a 0.2 % aqueous solution of sodium carbomethyl cellulose (CMC) at a inner cylinder rotational speed of $0{\sim}600$ rpm. The transitional flow has been examined by the measurement of pressure losses, to reveal the relation of the Reynolds numbers with the skin-friction coefficients, in the laminar and transitional flow regimes. The occurrence of transition has been checked by the gradient change of pressure losses and skin-friction coefficient with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical(axial-flow) Reynolds number decrease as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the onset of taylor vortices.

  • PDF

Flow of non-Newtonian fluid in a concentric annulus with rotation (환형관내 비뉴튼유체의 회전유동에 관한 연구)

  • Kim, Young-Ju;Woo, Nam-Sub;Seo, Byung-Taek;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2095-2100
    • /
    • 2003
  • This Experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin-friction coefficients have been measured for fully developed flow of bentonite-water solution(5%) when the inner cylinder rotates at the speed $0{\sim}400rpm$. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number $R_o$ With respect to the skin friction coefficients. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regime, the skin friction coefficient is increased by the inner cylinder rotation. The critical (bulk flow) Reynolds number $Re_c$ decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.

  • PDF

A Study on the Flows in a Concentric Annulus with rotating inner cylinder (안쪽축이 회전하는 환형관내 유동연구)

  • Kim Young-Ju;Woo Nam-Sub;Kwon Hyuk-Jung;Hwang Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.337-340
    • /
    • 2002
  • The present experimental and numerical investigations are performed for the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The flow field of an annulus has been numerically solved using a finite volume method. The pressure losses and Skin-friction coefficients have been measured for the fully developed flow of water and $0.2{\%}$ aqueous solution of sodium carboximethy1 cellulose (CMC), respectively at inner cylinder rotational speed of $0{\~}600rpm$. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. Consequently the critical(axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the onset of Taylor vortices.

  • PDF

An Experimental Study for the Effect of Intake Port Flows on the Tumble Generation and Breakdown in a Motored Engine (모터링엔진의 흡기포트 유동변화에 따른 텀블생성 및 소멸에 관한 실험적 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.912-919
    • /
    • 1994
  • The engine combustion is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake stroke breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of this relationship is not well known. This paper describes the tumble flow measurements inside the cylinder of a 4-valve S.I. engine using laser Doppler velocimetry(LDV) under motoring(non-firing) conditions. This is conducted on an optically assesed single cylinder research engine under motored conditions at an engine speed of 1000rpm. Three different cylinder head intake port configurations are studied to develop a better understanding the tumble flow generation, development, and breakdown mechanisms.

Driving Mechanism of Tapered Pistons in Bent-Axis Design Axial Piston Pumps

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.181-186
    • /
    • 2003
  • In order to assure the quality of the bent axis design axial piston pumps driven by tapered pistons, it is necessary to know the characteristics of force applied to tapered pistons and the mechanism for driving the tapered pistons. Since they are able to perform both reciprocating and spinning motions in cylinder block, it is difficult to understand the driving mechanismand-tomeasure the forces applied to tapered pistons experimentally In the present study, the theoretical mechanism for driving the tapered pistons is studied by use of the geometric method. The driving area of the tapered pistons is measured by measuring the strain of a cylinder forced against a tapered piston using an electric strain gauge and a slip ring. The forces applied to tapered pistons is also investigated with the change of discharge pressure and the rotational speed. As a results of this investigation, it is concluded that the cylinder block is driven by one tapered piston in a limited area and the driving area is changed due to space angle of the tapered pistons and the swivel angle of the cylinder block. It is also observed that the force applied to tapered pistons increases as the discharge pressure and the rotational speed increase.

Effect of Boosted Intake Pressure on Stratified Combustion of a Gasoline Direct Injection Engine (가솔린 직접분사 엔진의 흡기과급이 성층화 연소에 미치는 영향)

  • 조남효;박형철;김미로
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.48-55
    • /
    • 2003
  • The effects of pressure charge on combustion stability and emissions have been analyzed using a GDI single cylinder engine. A late injection mode of stratified condition at the air-fuel ratio of 40:1 for 1200∼2400 rpm was tested while the boosted pressure ratio was increased up to 1.5:1. In-cylinder CFD analysis was also performed for better understanding of in-cylinder flow and fuel spray behavior. With a higher boosted pressure ratio the IMEP was increased greatly due to the increased engine load, and the ISFC was improved by more than 10% at all engine speeds. The regime of stable stratified combustion was extended to a higher engine speed, but the spark ignition angle had to be more advanced for stable combustion. The emissions of ISHC and ISNOx did not show a particular trend for the increased engine speed but a general trend of lower ISHC and higher ISNOx for a gasoline engine.

A Mathematical Model of Threshing Process of the Head-fed Type Combine (자탈형(自脱型)콤바인의 탈곡과정(脱穀過程)의 수학적(數學的) 모형(模型) 개발(開發)에 관한 연구(硏究))

  • Chung, C.J.;Nam, S.I.
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.36-46
    • /
    • 1985
  • This study was intended to develop the mathematical model of the head-fed type threshing unit. As the first step, the physical model of the threshing phenomena was considered to consist of four separate processes as 1) detachment process of grains, 2) movement of grains between the cylinder and concave, 3) grain penetration through stems of bundle, and 4) grain passing through concave. The mathematical and computer models were developed based on the physical models. Threshing experiments were performed and determined the distribution of grain accumulation along the cylinder shaft by varying the moisture content of grains, feeding rate, and cylinder speed. It was found that the model developed coincided very well with the experimental results for the varied operational conditions. Greater concentration of grains passing through concave toward the thresher inlet was equally true for the model and experiment work for the threshing of grains with higher moisture content and with higher cylinder-speed. The model could be used for obtaining the optimized design or for optimizing the performance of the head-fed type threshing unit if term as to power requirement for threshing may be additionally included in the developed model.

  • PDF