• Title/Summary/Keyword: Cylinder Pressure

Search Result 1,550, Processing Time 0.035 seconds

A Study on the Wake Flow behind a Circular Cylinder with a Spinning Control Cylinder (회전하는 제어원주가 설치된 원주후류의 유동장에 관한 연구)

  • 부정숙;류병남;심정훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.58-69
    • /
    • 2000
  • An experimental study was conducted to investigate the influence of the spinning control cylinders which was set on the surface of a fixed circular cylinder in uniform flow, $Re=1.24\times10^4$. The measurements of velocity vectors and pressure distributions are carried out in various spin parameters and angles of spinning control cylinder. The results show that velocity profiles and pressure distributions are different with angles of control cylinder and spin parameters. When the control cylinder angle is $100^{\circ}$, there is more effect in increasing the velocity and the pressure distribution than other cases. In this case, the vortex shedding frequency was increased as increasing spin parameter.

  • PDF

New Approach to Pressure Control of a Impression Cylinder for Roll Coater (인쇄성능 향상을 위한 롤코터용 임프레션 실린더의 압력 제어)

  • Yun, S.N.;Ham, Y.B.;Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • This study presents a new approach to pressure control of a impression cylinder for roll coater which is a kind of face pressure control between blanket roll and impression roll. Roll-to-Roll method for printing is a very useful tool for mass production such as RFID elements, smart sensors and solar cell devices. In this study, a decupling control strategy of the roll coater which is a combination of a cylinder system, a dry system and two pressure regulators with two pneumatic cylinders was discussed. Also, the characteristics of component such as a pressure regulator having a pressure reducing function and the movement of a blanket roll and a impression cylinder were analyzed using the Matlab software. From this results, the techniques of a shock and a vibration reduction were suggested.

  • PDF

Effect of the Cylinder Pressure Fluctuation on the Noise of Oil Hydraulic Axial Piston Pumps (유압 액셜 피스톤 펌프의 실린더 내부 압력 변동이 소음에 미치는 영향)

  • 정재연;송규근;오석형;김종기;곽재련
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.737-740
    • /
    • 2002
  • Pressure fluctuation in the cylinder is one of the major sources on noise emission in oil hydraulic piston pumps. This paper reports an experimental study of pressure fluctuation characteristics in the cylinder of oil hydraulic piston pumps. We measured pressure fluctuation at BDC with delivery pressure, rotational speed. Because the pre-compression and the V-grooves in the valve plate is known of noise reduction, we investigated also the effect of pre-compression and V-grooves at the ends of the kidney ports with four types valve plates. We found that the pre-compression and the V-grooves in valve plate could reduce the noise of oil hydraulic piston pumps.

  • PDF

Misfire Detection of a Gasoline Engine by Analysis of the Variation of Pressure in the Exhaust Manifold (배기관 내 압력 변동 분석에 의한 가솔린 기관의 실화 검출)

  • 심국상;복중혁;김세웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.1-8
    • /
    • 1999
  • This paper describes the method for detection of the misfired cylinder by analysis of the variation of pressure occurred in exhaust manifold on an MPI gasoline engine. Misfired cylinder(s) cause a loss of power, an increase of fuel consumption and exhaust emission and vibration is caused by unsteady torque. Therefore early detection and correction of misfired cylinder(s) play a very important role in the proper performance and the exhaust emission. The method is a comparison of integration pressure index during the period of a blowdown in the displacement period. Experimental results showed that the method, using the variation of pressure in the exhaust manifold is proven to be effective in the detection of single cylinder or multiple cylinders misfire on the gasoline engine regardless of the engine revolutions. In addition, this method, using the variation of pressure in the exhaust manifold is a very easy and accurate method compared with other methods.

  • PDF

Study on the Correlation of Leakage by the Variation of Inlet Pressure and Clearance in Hydrostatic Bearing (정압베어링에서 입구압력 및 틈새간격 변화에 따른 누설량의 상관관계에 관한 연구)

  • Yun, Chung-Kug;Bae, Kang-Youl;Jeoun, Jin-Seong
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.34-39
    • /
    • 2016
  • This paper is the numerical study on the correlation of leakage by the variation of inlet pressure and clearance in hydrostatic bearing. The main goal of this study is to apply to the design of hydro system the results that the pocket pressure and the leakage rate according to the inlet pressure and the clearance between piston and cylinder tube. Because the hydrostatic bearing in hydraulic cylinder has the narrow rectangular channel between piston and cylinder tube, so to verify the numerical scheme, it has been compared with the experimental results of Brackbill and Kandlikar. The pressure data of numerical results inside narrow rectangular channel correlate was showed a good agreement with experimental results, thereby the numerical scheme was applied to the real model that is a hydraulic cylinder with the hydrostatic bearing. In conclusion, the pressure differences between inlet and pocket were shown within 3%. Leakage rates were showed rapidly increased pattern between about 4.5 and 6.7 times because the section area to calculate the leakage rates were proportioned to a square of diameter. The correlation equation was calculated among the inlet pressure, the clearance and the leakage rate by using the linear regression.

Failure Pressure Prediction of Composite Cylinders for Hydrogen Storage Using Thermo-mechanical Analysis and Neural Network

  • Hu, J.;Sundararaman, S.;Menta, V.G.K.;Chandrashekhara, K.;Chernicoff, William
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.233-249
    • /
    • 2009
  • Safe installation and operation of high-pressure composite cylinders for hydrogen storage are of primary concern. It is unavoidable for the cylinders to experience temperature variation and significant thermal input during service. The maximum failure pressure that the cylinder can sustain is affected due to the dependence of composite material properties on temperature and complexity of cylinder design. Most of the analysis reported for high-pressure composite cylinders is based on simplifying assumptions and does not account for complexities like thermo-mechanical behavior and temperature dependent material properties. In the present work, a comprehensive finite element simulation tool for the design of hydrogen storage cylinder system is developed. The structural response of the cylinder is analyzed using laminated shell theory accounting for transverse shear deformation and geometric nonlinearity. A composite failure model is used to evaluate the failure pressure under various thermo-mechanical loadings. A back-propagation neural network (NNk) model is developed to predict the maximum failure pressure using the analysis results. The failure pressures predicted from NNk model are compared with those from test cases. The developed NNk model is capable of predicting the failure pressure for any given loading condition.

Nonlinear Buckling Finite Element Analysis to Estimate Collapse Pressure of Thick Cylinder under Hydrostatic Pressure (두꺼운 원통형 내압용기의 붕괴하중 추정을 위한 비선형좌굴 유한요소해석)

  • Lee, Jae-Hwan;Park, Byoungjae;Choi, Hyuek-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.272-279
    • /
    • 2019
  • In order to perform a pressure chamber experiment with a circular cylindrical pressure vessel, the dimensions of the cylinder need to be determined in the range of the maximum externally applied pressure of the chamber to create the collapse process. In this study, the collapse load values from published chamber test results, finite element analysis and the theory of thick cylinders were thoroughly compared in a aluminum cylinder. In order to investigate the effect of collapse load according to the ovality during manufacturing, nonlinear buckling analysis was performed and the collapse load according to ovality was compared. Based on the results, the dimensions of the steel cylinder were determined for the future chamber collapse test.

Study of The Cushion Characteristics in accordance with Shapes of Cushion Ring of Hydraulic Cylinder (유압실린더의 쿠션링 형상에 따른 쿠션 특성 연구)

  • Lee, Y.B.;Ko, J.M.;Park, J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.2
    • /
    • pp.14-19
    • /
    • 2008
  • Hydraulic excavator consists of booms, arms, bucket, and cylinder. The cylinder make these structures moved and the cushion parts of cylinder in operation absorb the great impact which is stemmed from high velocity and pressure at cushion parts of cylinders. The cushion technology of cylinders has a great effect on the operator's comfortable as well as protecting equipment from damage by suppressing the inertia of the hydraulic excavator. In this study, three hydraulic cylinders have different shapes of a cushion ring, respectively. we studied optimal cushion pattern by analyzing the change of cushion pressure and time, according to supply pressure and velocity variations.

  • PDF

A study about reducing Turbocharger Pulsation of 3 cylinder engine (3 기통 엔진의 터보 차저 맥동 저감에 대한 연구)

  • Seo, Kwanghyun;Cho, Sungyong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.667-669
    • /
    • 2014
  • Development of 3 cylinder turbo charger engine is increasing due to engine down-sizing, cost reduction and emission regulations. However, 3 cylinder engine makes higher Exhaust manifold gas pressure(P3) pulsation than 4 cylinder engine and it generate boosting air with high pulsation. The mechanical waste-gate turbocharger just controlled by the boosting air has higher movement because of this high pulsation boosting air. This causes high vibrations to wasted gate and accelerate wear of the linkage system. So we need to understand out of the exhaust gas pressure pulsation changed by turbocharger compressor pressure(P2) Pulsation. In this study, we discuss how to prevent to abnormal movement of the turbo actuator by stabilized P2 Pulsation.

  • PDF

Simulation Study on Dynamic Analysis of Spring Type Needle Valve to Absorb Surge Pressure in Pneumatic Cushion Cylinder (공압 쿠션 실린더의 충격압 흡수를 위한 스프링형 니들밸브의 동특성에 관한 연구)

  • Lee J.G.;Xiaofei Qin;Lee J.;Lee J.C.;Shin H.M.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • The purpose of this study is to find the effective dynamic characteristics of an improved pneumatic cushion cylinder with a spring type needle valve. The dynamic model represented the peak pressure control method when the pneumatic cushion cylinder is moving forward or backward in the horizontal direction. It was found from the simulation results that the peak pressure in the cushion chamber is affected by the spring, which helps to understand the performance of the pneumatic cushion cylinder and to improve or design a better cushion needle valve component. From the simulation results, the stability of pneumatic cushion cylinder with a spring type needle valve was superior and its cushion capability was also better than that without the spring.

  • PDF