• Title/Summary/Keyword: Cyclohexanone

Search Result 98, Processing Time 0.024 seconds

Nitrite Scavenging Activity of Bromophenol Congeners from Symphyocladia latiuscula

  • Park Hye Jin;Lee Hee Jung;Jung Hyun Ah;Choi Jae Sue
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.47-49
    • /
    • 2001
  • Nitrite scavenging activity of a methanol extract of Symphyocladia latiuscula was studied. The methanol extract scavenged the nitrite in a dose-dependent manner. The MeOH extract was then sequentially partitioned with n-hexane, $CH_2Cl_2$, EtOAc, n-BuOH and $H_2O$. The scavenging activity of the fractions increased in order of $CH_2Cl_2$, n-hexane, EtOAc, n-BuOH, and $H_2O$. Especially, the activity of the $CH_2Cl_2$ fraction was comparable to that of L-ascorbic acid. Column chromatography of the most active $CH_2Cl_2$ fraction over silica gel yielded three active bromophenol congeners (1-3) which were identified as (2R)-2-(2,3,6-tribromo 4,5-dihydro­xybenzyl) cyclohexanone (1), 2,3,6-tribromo 4,5-dihydroxybenzyl methyl ether (2), and 2,3,6­tribromo 4,5-dihydroxybenzyl alcohol (3) respectively.

  • PDF

Cyclohexanol Dehydrogenase isozymes produced by Rhodococcus sp. TK6 (Rhodococcus sp. TK6가 생산하는 Cyclohexanol Dehydrogenase의 동위효소)

  • 김태강;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.124-128
    • /
    • 1999
  • TK6 was able to produce NAD+ dependent cyclohexanol dehydrogenase(CDH). The production of CDH was increased rapidly at the logarithmic phase and maintained constantly after that. In order to investigate the inductive production of CDH by various substrates, the bacteria were grown in the media containing alicyclic hydrocarbons and various alcohols as a sole crabon souce. CDH was induced most actively by cyclohexanol. Cyclohexanone and cyclohexane-1,2-diol also induced remarkable amount of CDH but it was induced weakly by 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 2-propanol, and 2-methyl-1-propanol. The dehydrogenase of the bacteria grown in the media containing cyclohexanol were weakly active for various alcohols, but the dehydrogenase activity for cyclohexane-1,2-diol was twice as much as that for cyclohexanol. Activity staining on PAGE of the cell free extract of Rhodococcus sp. TK6 grown in the media containing cyclohexanol reveals at least sever isozyme bands of CDH and we nominated the four major activity bands as CDH I, II, III, and IV. CDH I was strongly induced by cyclohexanol, cyclohexane-1,2-diok, but its activity was specific to cyclohexane-1,2-diol and 1-pentanol. CDH IV was strongly induced by cyclohexanol and cyclohexane-1,2-diol, and its activity was very specific to cyclohexane-1,2-diol.

  • PDF

Synthesis, Characterization and Liquid Phase Oxidation of Cyclohexane with Hydrogen Peroxide over Oxovanadium(IV) Schiff-base Tetradendate Complex Covalently Anchored to Multi-Wall Carbon Nanotubes (MWNTs)

  • Salavati-Niasari, Masoud;Bazarganipour, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.355-362
    • /
    • 2009
  • The chemical modification of multi-wall carbon nanotubes (MWNTs) is an emerging area in material science. In the present study, hydroxyl functionalized oxovanadium(IV) Schiff-base; N,N'-bis(4-hydroxysalicylidene)-ethylene-1, 2-diamineoxovanadium(IV), [VO($(OH)_2$-salen)]; has been covalently anchored on modified MWNTs. The new modified MWNTs ([VO($(OH)_2$-salen)]-MWNTs]) have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron (XPS), UV-Vis, Diffuse reflectance (DRS), FT-IR spectroscopy and elemental analysis. The analytical data indicated a composition corresponding to the mononuclear complex of tetradentate Schiff-base ligand. The characterization of the data showed the absence of extraneous complex, retention of MWNTs and covalently anchored on modified MWNTs. Liquid-phase oxidation of cyclohexane with $H_2O_2$ to a mixture of cyclohexanone, cyclohexanol and cyclohexane-1,2-diol in $CH_3$CN have been reported using oxovanadium(IV) Schiff-base complex covalently anchored on modified MWNTs as catalysts. This catalyst is more selective toward cyclohexanol formation.

Reaction of Lithium Gallium Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Choe, Jeong Hun;Yun, Mun Yeong;Yun, Jong Hun;Jeong, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.416-421
    • /
    • 1995
  • The approximate rates and stoichiometry of the reaction of excess lithium gallium hydride with selected organic compounds containing representative functional groups were examined under the standard conditions (diethyl ether, 0 $^{\circ}C)$ in order to compare its reducing characteristics with lithium aluminum hydride and lithium borohydride previously reported, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, and amines evolve hydrogen rapidly and quantitatively. However lithium gallium hydride reacts with only one active hydrogen of primary amine. Aldehydes and ketones of diverse structure are rapidly reduced to the corresponding alcohols. Conjugated aldehyde and ketone such as cinnamaldehyde and methyl vinyl ketone are rapidly reduced to the corresponding saturated alcohols. p-Benzoquinone is mainly reduces to hydroquinone. Caproic acid and benzoic acid liberate hydrogen rapidly and quantitatively, but reduction proceeds slowly. The acid chlorides and esters tested are all rapidly reduced to the corresponding alcohols. Alkyl halides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced slowly. Benzonitrile consumes 2.0 equiv of hydride rapidly, whereas capronitrile is reduced slowly. Nitro compounds consumed 2.9 equiv of hydride, of which 1.9 equiv is for reduction, whereas azobenzene, and azoxybenzene are inert toward this reagent. Cyclohexanone oxime is reduced consuming 2.0 equiv of hydride for reduction at a moderate rate. Pyridine is inert toward this reagent. Disulfides and sulfoxides are reduced slowly, whereas sulfide, sulfone, and sulfonate are inert under these reaction conditions. Sulfonic acid evolves 1 equiv of hydrogen instantly, but reduction is not proceeded.

Flavoral Essential Oil Components in the Stems of Agastache rugosa for Aromatherapy (아로마테라피용 배초향(Agastache rugosa) 줄기의 방향성 정유 성분)

  • Kim, Jeong-Mee
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.3
    • /
    • pp.317-324
    • /
    • 2021
  • This study was carried out to investigate the flavoral essential oil components in the stems of Agastache rugosa. These components were analyzed using gas chromatography-mass selective detector (GC-MSD). The stems of Agastache rugosa were contained alcohols, aldehydes, ketones, fatty acid esters, and terpenoids. The peak area (%) of estragole was highest among its oil components and the next were pulegone and menthone. The terpenoid alcohols found were 1-octen-3-ol, chavicol, spatulenol, 3-hexen-1-ol, 2-cyclohexen-1-ol, methyl eugenol, and octaethyllene glycol. The stems also contained ketones such as pulegone, menthone, cis-isopulegone, 2-cyclohexene-1-one, 3-octanone, 1-cyclohexanone, isoindole-1-one, t-ionone, inden-2-one, as well as the aldehydes of 4-methoxycinnam and benzaldehyde. The following esters were also detected 1-isopulegone-3-yl acetate, caryophyllene oxide, acetate and benzendicarboxylic acid ester. The terpenoids in the stems were identified as caryophyllene, limonene, cyclohexasiloxane-D, germacrene-D, anethole, cadinene, muurolene, and bourbonene. Overall Agastache rugosa contained several functional oil components including phenylpropanoids and terpenoids as flavoral essential oil components for natural aromatherapy.

Selective Reduction with Zinc Borohydride. Reaction of Zinc Borohydride with Selected Organic Compounds Containing Representative Functional Groups (수소화붕소아연에 의한 선택환원. 수소화붕소아연의 대표적 유기화합물과의 반응)

  • Yoon Nung Min;Ho Jun Lee;Hye Kyu Kim;Jahyo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.59-72
    • /
    • 1976
  • The addition of one mole of zinc chloride to 2.33 moles of sodium borohydride in tetrahydrofuran at room temperature gave a clear chloride-free supernatant solution of zinc borohydride after stirring three days and standing at room temperature.The approximate rates and stoichiometry of the reaction of zinc borohydride with 54 selected organic compounds were determined in order to test the utility of the reagent as a selective reducing agent. Aldehydes and ketones were reduced rapidly, aromatic ketones being somewhat slowly, and the double bond of cinnamaldehyde was not attacked. Acyl halides were reduced rapidly within one hour, but acid anhydrides were reduced at a moderate rate. Carboxylic acids, both aliphatic and aromatic, were slowly reduced to alcoholic stage. Esters were inert to this reagent but a cyclic ester, γ-butyrolactone, was slowly attacked. Primary amides were reduced slowly with partial evolution of hydrogen, whereas tertiary amides underwent neither reduction nor hydrogen evolution. Epoxides and nitriles were all inert, as well as nitro, azo, and azoxy compounds. Cyclohexanone oxime and phenyl isocyanate were reduced slowly but pyridine was inert. Disulfide, sulfoxide, sulfone and sulfonic acids were stable to this reagent.

  • PDF

2D-QSAR and HQSAR Analysis on the Herbicidal Activity of New Cyclohexanedione Derivatives (새로운 Cyclohexanedione계 유도체의 제초활성에 관한 2D-QSAR 및 HQSAR 분석)

  • Kim, Yong-Chul; Hwang, Tae-Yeon;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • QSARs (Quantitative structure-activity relationships) between a series of new cyclohexanedione derivatives (5-benzofuryl-2-[1-(alkoxyimino)-alkyl]-3-hydroxycyclohex-2-en-1-ones) and their herbicidal activity against Rice plant (Oryza sativa L.) and Barnyard grass (Echinochloa crus-galli.) were discussed quantitatively using 2D-QSAR and holographic (H) QSAR methods. Generally, the HQSAR models have better predictability and fitness than the 2D-QSAR models. The herbicidal activities against Barnyard grass with 2D-QSAR II model were dependent upon Balaban indice (BI) of molecule and hydrophobicity of $R_1$ and $R_3$ group. And also, the $R_3=ethyl$ group, according to the information of the optimized HQSAR IV model, was more contribute to the herbicidal activities against Rice plant, while the 5-(cyclohex-3-enyl)-2,3-dihydrobenzofuran ring part was not contribute to the herbicidal activities against two plants.

Purification and Characterization of a Cyclohexanol Dehydrogenase from Rhodococcus sp. TK6

  • Kim, Tae-Kang;Choi, Jun-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2002
  • Activity staining on the native polyacrylamide gel electrophoresis (PAGE) of a cell-free extract of Rhodococcus sp. TK6, grown in media containing alcohols as the carbon source, revealed at least seven isozyme bands, which were identified as alcohol dehydrogenases that oxidize cyclohexanol to cyclohexanone. Among the alcohol dehydrogenases, cyclohexanol dehydrogenase II (CDH II), which is the major enzyme involved in the oxidation of cyclohexanol, was purified to homogeneity. The molecular mass of the CDH II was determined to be 60 kDa by gel filtration, while the molecular mass of each subunit was estimated to be 28 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The CDH II was unstable in acidic and basic pHs, and rapidly inactivated at temperatures above $40^{\circ}C$ . The CDH II activity was enhanced by the addition of divalent metal ions, like $Ba^2+\;and\;Mg^{2+}$. The purified enzyme catalyzed the oxidation of a broad range of alcohols, including cyclohexanol, trans-cyclohexane-1,2-diol, trans-cyclopentane-l,2-diol, cyclopentanol, and hexane-1,2-diol. The $K_m$ values of the CDH II for cyclohexanol, trans-cyclohexane-l,2-diol, cyclopentanol, trans-cyclopentane-l,2-diol, and hexane-l,2-diol were 1.7, 2.8, 14.2, 13.7, and 13.5 mM, respectively. The CDH II would appear to be a major alcohol dehydrogenase for the oxidation of cyclohexanol. The N-terminal sequence of the CDH II was determined to be TVAHVTGAARGIGRA. Furthermore, based on a comparison of the determined sequence with other short chain alcohol dehydrogenases, the purified CDH II was suggested to be a new enzyme.

Conjugation of Cyclohexane Metabolite in Liver Damaged Rats

  • Joh, Hyun-Sung;Yoon, Chong-Guk
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.361-370
    • /
    • 2006
  • To evaluate an effect of pathological liver damage on the conjugation of cyclohexane metabolites, rats were pretreated with 50% $CCl_4$ dissolved in olive oil (0.1 ml/100 g body weight) 10 or 17 times intraperitoneally at intervals of every other day. On the basis of liver function, the animals pretreated with $CCl_4$ 10 times were identified as acutely liver damaged ones and the animals pretreated with $CCl_4$ 17 times were identified as severly liver damaged ones. To these liver damaged animals, cyclohexane (a single dose of 1.56 g/kg body weight, i.p.) was administered at 48 hr after the last injection of $CCl_4$. The rats were sacrificed at 4 or 8 hr after injection of cyclohexane. The cyclohexane metabolites, cyclohexanol (CH-ol), cyclohexane-1,2-diol (CH-1,2-diol), cyclohexane-1,4-diol (CH-1,4-diol), and their glucuronyl conjugates and cyclohexanone were detected in the urine of cyclohexane treated rats. The urinary concentration of cyclohexane metabolites was generally more increased in liver damaged animals than normal ones, and the increasing rate was higher in $CCl_4$ 17 times injected rats than 10 times injected ones. And liver damaged.ats, especially $CCl_4$ 17 times treated ones, had an enhanced ability of glucuronyl conjugation to CH-ol analogues compared with normal group. Futhermore, CH-1,2 and 1,4-diol were all conjugated with glucuronic acid in $CCl_4$ 17 times injected animals. On the other hand, the increasing rate of activities of hepatic cytochrome P450 dependent aniline hydroxylase, alcohol dehydrogenase and urine diphosphate glucuronyl transferase was higher in 17 times $CCl_4$-treated rats compared with normal and $CCl_4$ 10 times injected animals. Taken all together, it is assumed that an increased urinary excretion amount of cyclohexane metabolites in liver damaged rats might be caused by an increase in the activities of cyclohexane metabolizing enzymes. And enhanced conjugating ability of CH-ol in liver damaged animals and novel finding of conjugating form of CH-1,2 and 1,4-diol might be caused by increase in the activity of hepatic diphosphouridine glucuronyltransferase.

  • PDF

Effect of Cyclohexnae on the Lung Toxicity in Rats (Cyclohexane에 의한 흰쥐의 폐독성)

  • 전태원;이상일;윤종국
    • Biomedical Science Letters
    • /
    • v.6 no.4
    • /
    • pp.245-251
    • /
    • 2000
  • In order to search the target organ of cylclohexane toxicity, the rats were intraperitoneally treated with cyclohexane (1.56 g/kg of body wt.) four times every other day. In the increasing rate of organ weight per body weight (%) in cyclohexane-treated animals, the lung was highest among the liver, spleen, small intestine, stomach, heart and kidney. And in the decreasing rate of glucose-6-phosphatase (G-6-Pase) activity in each organ, that of lung was also highest among all organs. Lung MDA content was significantly increased (p<0.05) by the cyclohexane treatment. On the other hand, microsomal aniline hydroxylase activity in lung tissue both of control and cyclohexane-treated rats was greatly low as could be scarcely measured, but that in liver possessing high activity was significantly increased (p<0.05) in cyclohexane-treated rats compared with control. Alcohol dehydrogenase activity in lung was markedly higher than that of liver and the latter was significantly (p<0.05) increased by the cyclohexane treatment. In conclusion, cyclohexane treatment to the rats showed mainly lung toxicity and it may be responsible for cyclohexanon, cyclohexane metabolite, distributed from liver.

  • PDF