• Title/Summary/Keyword: Cycling performance

Search Result 343, Processing Time 0.02 seconds

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF

An Empirical Study on the Impact of the Perception of the Monitoring Function on Effective BPMS Adoption (모니터링 기능에 대한 인식이 효과적인 BPMS 도입에 미치는 영향)

  • Chae, Myung-Sin;Park, Jin-Suk;Lee, Byung-Tae
    • Asia pacific journal of information systems
    • /
    • v.17 no.3
    • /
    • pp.105-130
    • /
    • 2007
  • Recently, there is a substantial interest in implementing Business Process Management System(BPMS) among enterprises with the purpose of business process innovation. BPMS redesigns and coordinates business processes in terms of both automated steps and human involvement in order to maximize the value of both involved people and systems. The reason why BPMS is getting attention from top managers is that it has the possibility to optimize the business processes by cycling the process of modeling, execution, monitoring, evaluation, and redesigning work processes. Thus, it has created high expectations about not only productivity improvement but also business process innovation. However. having an innovative nature, which is used for process innovation, BPMS implementation has great potential to stir up employee resistance. The analysis and the discussion about the prevention of the resistance against IS(Information Systems) is important because IS change the way people work and also alter the power structure within the organization, in general. The purpose of this study is to investigate factors that have an impact on the effective adoption of BPMS at the enterprise level. To find out these factors, this study considers two characteristics of BPMS: First. BPMS shares some characteristics with other enterprise-wide IS such as ERP. Second, it has special BPMS-specific characteristics. Due to the lack of previous research on BPMS adoption, interviews were carried out with IT-consultants and CIOs who conducted BPMS projects previously to find out BPMS-specific features that would make BPMS unique when compared to other enterprise-wide IS. As a result, the monitoring function was chosen as the main BPMS-specific factor. Thus, this paper reviewed studies both on enterprise-wide IS adoptions, which applied Technology Acceptance Model (TAM) and secondly on computer based monitoring to find out factors that would influence the employees' perception on the monitoring function of BPMS. Based on the literature review, the study suggested three factors that would have an impact on the employee's perception of the monitoring function: fairness of enterprise evaluation system, fairness of the boss, and self-efficacy of their work. Three factors that would impact the enterprise-wide IS adoption were also set: the shared belief in the benefit of BPMS, training, and communication. Then, these factors were integrated with TAM. Structural equation modeling was used to test hypotheses, out factors that would impact the employees' perception on the monitoring function of BPMS. Based on the literature review the study suggested three factors that would have an impact on the employee's perception of the monitoring function: fairness of enterprise evaluation system, fairness of the boss, and self-efficacy of their work. Three factors that would impact the enterprise-wide IS adoption were also set: the shared belief in the benefit of BPMS, training, and communication. Then, these factors were integrated with TAM. Structural equation modeling was used to test hypotheses. The data analysis results showed that two among three monitoring function related factors - enterprise evaluation system and fairness of the boss - were significant. This implies that employees would worry less about the BPMS implementation as long as they perceive the monitoring results will be used fairly for their performance evaluation. However, employees' high self-efficacy on their job was not a significant factor in their perception of the usefulness of BPMS. This is related to cases that showed employees resisted against the information systems because they automated their works (Markus, 1983). One specific case was an electronic company, where the accounting department workers were requested to redefine their job because their working processes were automated due to BPMS implementation.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.