• Title/Summary/Keyword: Cycling load

Search Result 71, Processing Time 0.02 seconds

The study of simplified technique compared with analytical solution method for calculating the energy consumption loads of four houses having various wall construction

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.1
    • /
    • pp.46-58
    • /
    • 2011
  • A steady-state analysis and a simple dynamic model as simplified methods are developed, and results of energy consumption loads are compared with results obtained using computer to evaluate the analytical solution. Before obtaining simplified model a mathematical model is formulated for the effect of wall mass on the thermal performance of four different houses having various wall construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. The steady state analysis that does not include the effect of thermal mass can provide an accurate estimate of energy consumption in most cases except for houses #2 and #4 in mild weather areas. This result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions. The simple dynamic model is applicable for high cycling rates and accurate values of inside wall temperature and ambient air temperature.

Comparison of Local and Global Fitting for Exercise BP Estimation Using PTT (PTT를 이용한 운동 중 혈압 예측을 위한 Local과 Global Fitting의 비교)

  • Kim, Chul-Seung;Moon, Ki-Wook;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2265-2267
    • /
    • 2007
  • The purpose of this work is to compare the local fitting and global fitting approaches while applying regression model to the PTT-BP data for the prediction of exercise blood pressures. We used linear and nonlinear regression models to represent the PTT-BP relationship during exercise. PTT-BP data were acquired both under resting state and also after cycling exercise with several load conditions. PTT was calculated as the time between R-peak of ECG and the peak of differential photo-plethysmogram. For the identification of the regression models, we used local fitting which used only the resting state data and global fitting which used the whole region of data including exercise BP. The results showed that the global fitting was superior to the local fitting in terms of the coefficient of determination and the RMS (root mean square) error between the experimental and estimated BP. The nonlinear regression model which used global fitting showed slightly better performance than the linear one (no significant difference). We confirmed that the wide-range of data is required for the regression model to appropriately predict the exercise BP.

Effectiveness of R/C jacketing of substandard R/C columns with short lap splices

  • Kalogeropoulos, George I.;Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.273-292
    • /
    • 2014
  • The effectiveness of a retrofitting method for concrete columns with particular weaknesses is experimentally evaluated and presented in this paper. Structural deficiencies namely the inadequacy of transverse reinforcement and short length of lap splices are very common in columns found in structures built prior to the 1960s and 1970s. Recent earthquakes worldwide have caused severe damages and collapses of these structures. Nevertheless, the importance of improving the load transfer capacity between the deficiently lap-spliced bars is usually underestimated during the strengthening procedures applied in old buildings, though critical for the safety of the residents' lives. Thus, the seismic performance of the enhanced columns is frequently overestimated. The retrofitting approach presented herein involves reinforced concrete jacketing of the column sub-assemblages and welding of the lap-spliced bars to prevent the splice failure and conform to the provisions of modern design Codes. The cyclic lateral loading response of poorly confined original column specimens with insufficient lap splices and the seismic behavior of the retrofitted columns are compared. Test results clearly demonstrate that the retrofitting procedure followed is an effective way of significantly improving the seismic performance of substandard columns found in old buildings.

Investigation on the electromechanical properties of RCE-DR GdBCO CC tapes under transversely applied load

  • Gorospe, Alking B.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.49-52
    • /
    • 2014
  • REBCO coated conductor (CC) tapes with superior mechanical and electromechanical properties are preferable in applications such as superconducting coils and magnets. The CC tapes should withstand factors that can affect their performance during fabrication and operation of its applications. In coil applications, CC tapes experience different mechanical constraints such as tensile or compressive stresses. Recently, the critical current ($I_c$) degradation of CC tapes used in coil applications due to delamination were already reported. Thermal cycling, coefficient of thermal expansion mismatch among constituent layers, screening current, etc. can induce excessive transverse tensile stresses that might lead to the degradation of $I_c$ in the CC tapes. Also, CC tapes might be subjected to very high magnetic fields that induce strong Lorentz force which possibly affects its performance in coil applications. Hence, investigation on the delamination mechanism of the CC tapes is very important in coiling, cooling, operation and design of prospect applications. In this study, the electromechanical properties of REBCO CC tapes fabricated by reactive co-evaporation by deposition and reaction (RCE-DR) under transversely applied loading were investigated. Delamination strength of the CC tape was determined using the anvil test. The $I_c$ degraded earlier under transverse tensile stress as compared to that under compressive one.

Experimental research on dynamic response of red sandstone soil under impact loads

  • Wang, Tong;Song, Zhanping;Yang, Jianyong;Wang, Junbao;Zhang, Xuegang
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.393-403
    • /
    • 2019
  • The cycling impact test of red sandstone soil under different axial pressure and different impact loads are conducted to reveal the mechanical properties and energy consumption mechanism of red sandstone soil with static-dynamic coupling loading. The results show that: Under the action of different axial pressure and different impact loads, the peak stress of the specimen increases, and then tends to be stable with the times of impact. With the increase of impact times, the specific energy absorption value of the red sandstone soil specimen is increased first and then gentle development trend. When the impact loads are certain, the larger the axial pressure is, the smaller the peak value of energy absorption, which indicates that the energy utilization rate is not high under the condition of large axial pressure. Through the analysis of energy utilization, it is found that the smaller the impact load, the higher the energy utilization rate. The greater the axial pressure, the lower the energy utilization rate. when the axial pressure is large, the impact loads corresponding to the maximum values of reflectivity, transmissivity and absorptivity are the same. The relationship between reflectivity and transmissivity is negatively correlated.

A Preliminary Study on Fatigue Strength of High Toughness Thermoplastic Composite Material AS4/PEEK (고인성 열가소성 복합재료 AS4/PEEK의 피로강도에 관한 기초적 검토)

  • Song, Ji-Ho;Gang, Jae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1055-1064
    • /
    • 2000
  • First, various specimen geometries, namely, coupon type, waisted type and dog-bone type, were examined to determine appropriate fatigue specimen of thermoplastic composite material AS4/PEEK and the n, fatigue strength of smooth and notched specimens of AS4/PEEK [-45/0/+45/90]2s was investigated. Fatigue tests were performed under load controlled condition at a stress ratio of 0. 1 at a frequency of 5Hz. Stiffness degradation of specimens with fatigue cycling was monitored using an automated unloading compliance technique. The waisted type specimen is found appropriate for smooth fatigue specimen geometry of AS4/PEEK. As for the effect of stress concentration, it is found that fatigue strength is higher for a 2mm-diameter hole notched specimen than a 5mm-diameter one. Fatigue notch factor decreases with the increase of fatigue life. These results are far different from the trend of fatigue strength of metallic materials. The stiffness variation of smooth specimen was only 4% at maximum until final fracture. On the other hand, the stiffness of hole notched specimen was reduced by 45% at maximum. Notched fatigue strength was compared between thermoplastic composite AS4/PEEK and thermosetting composite Graphite/Epoxy. In long-life fatigue (>104), the AS4/PEEK composite shows superior fatigue strength, but in short-life fatigue, the fatigue strength of the Graphite/Epoxy composite is nearly equal or somewhat higher than that of the AS4/PEEK composite.

Comparison and Analysis of Cycling Packet Drop Algorithms and RIO as Packet Drop for the Congestion Control (혼잡제어용 패킷 폐기를 위한 사이클링 패킷 폐기 기법과 RIO 알고리즘의 비교 분석)

  • Kim, Su-Yeon;Gang, Hyeon-Guk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.59-68
    • /
    • 2002
  • In this paper, we compared and analyzed two new models of cyclic packet dropping algorithm, Adaptive Cyclic Packet Dropping algorithm (ACPD), and Non-adaptive Cyclic Packet Dropping algorithm (NCPD) with RIO. The ACPD algorithm drops adaptively packets for the congestion control, as predicting traffic pattern between each cycle. Therefore the ACPD algorithm makes up for the drawback of RIO algorithm and minimizes the wastes of the bandwidth being capable of predicting in the NCPD algorithm. We modelled two cyclic packet drop algorithms and executed a simulation and analyzed the throughput and packet drop rate based on Sending Priority changing dynamically depending on network traffic. In this algorithm, applying the strict drop precedence policy, we get better performance on priority levels. The results show that two new algorithms may provide more efficient and stricter drop precedence policy as compared to RIO independent of traffic load. The ACPD algorithm can provide better performance on priority levels and keep stricter drop policy than other algorithms.

A STUDY ON THE FATIGUE AND PHYSICAL PROPERTIES OF TITANIUM USED IN REMOVABLE PARTIAL DENTURES (국소의치용 티나늄의 피로도 및 물리적 성질에 관한 연구)

  • Kim Hak-Sun;Kim Kwang-Nam;Chang Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.2
    • /
    • pp.249-267
    • /
    • 1994
  • The purpose of this study was to compare the fatigue, physical properties, flexibility and surface roughness of titanium used in removable partial dentures with those of a type IV and alloy and a cobalt- chromium alloy. Fatigue testing subjected the test specimen to rapid cycling at a given stress until failure occurred by using a small-sized, electrodynamic type bending fatigue testing machine. The S-N curves for the framework materials were generated. For tensile testing, a tensile bar as described in the ADA Specification No.14 was subjected to tensile loading until failure occurred. Load-displacement curves were generated for 18 gauge round specimen and tapered half round specimen. Then the flexibilities were calculated. The surface roughnesses were compared by analyzer. Through analyses of the data, the following conclusions were obtained. 1. The fatigue property of titanium was higher than that of a type IV gold alloy$(p\leq0.05)$, but there was no significant difference between titanium and a cobalt-chromium alloy $(p\geq0.05)$. 2. The yield strength, the ultimate tensile strength and Victors hardness of titanium were higher than those of a type IV gold alloy but lower than those of a coalt-chromium alloy$(p\leq0.05)$. 3. The percentage of elongation and reduction of area of titanium were the highest $(p\leq0.05)$. 4. The surface roughness of titanium was the greatest$(p\leq0.05)$. 5. The flexibility of titanium was lower than that of a type IV gold alloy but higher than that of a cobalt-chromium alloy$(p\leq0.05)$.

  • PDF

Effect of ferrule on the fracture resistance of mandibular premolars with prefabricated posts and cores

  • Kim, Ae-Ra;Lim, Hyun-Pil;Yang, Hong-So;Park, Sang-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.328-334
    • /
    • 2017
  • PURPOSE. This study evaluated fracture resistance with regard to ferrule lengths and post reinforcement on endodontically treated mandibular premolars incorporating a prefabricated post and resin core. MATERIALS AND METHODS. One hundred extracted mandibular premolars were randomly divided into 5 groups (n=20): intact teeth (NR); endodontically treated teeth (ETT) without post (NP); ETT restored with a prefabricated post with ferrule lengths of either 0 mm (F0), 1 mm (F1), or 2 mm (F2). Prepared teeth were restored with metal crowns. A thermal cycling test was performed for 1,000 cycles. Loading was applied at an angle of 135 degrees to the axis of the tooth using a universal testing machine with a crosshead speed of 2.54 mm/min. Fracture loads were analyzed by one-way ANOVA and Tukey HSD test using a statistical program (${\alpha}=.05$). RESULTS. There were statistical differences in fracture loads among groups (P<.001). The fracture load of F2 ($237.7{\pm}83.4$) was significantly higher than those of NP ($155.6{\pm}74.3N$), F0 ($98.8{\pm}43.3N$), and F1 ($152.8{\pm}78.5N$) (P=.011, P<.001, and P=.008, respectively). CONCLUSION. Fracture resistance of ETT depends on the length of the ferrule, as shown by the significantly increased fracture resistance in the 2 mm ferrule group (F2) compared to the groups with shorter ferrule lengths (F0, F1) and without post (NP).

Beam Tests for Static and Fatigue Interface Shear Strength between Old and Njew Concretes (신구콘크리트 계면의 전단강도 측정을 위한 정하중 및 피로하중 보실험)

  • 최동욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.137-147
    • /
    • 1997
  • Interface shear strength of' concrete under static loading and deterioratiion of interface strength by fatigue loading in shear were experimentally investigated using composite beam test specimens. Thirteen beams were constructed. Five composite beams were tested statically until interface delaminations were observed in the static tests. Seven composite beam and one monolithically cast beam were subjected to two to three million cycles of fatigue load. Test variables were interface roughness, interface shear reinforcement, and presence of interface bond. The average interface shear strength of the composite beams with bonded-rough interface was 6, 060 kPa. No interface delamination was observed after cycling for the composite beams with bonded - rough interface and interface bond was not influenced by repeated application of the shear stress of 2.000 kPa(about 1/3 of the static interface shear strength). Smooth interface and unbonded-rough interface with shear reinforcement deteriorated under repeated shear loading.