• Title/Summary/Keyword: Cycling Safety

Search Result 61, Processing Time 0.018 seconds

Material Life Cycle Assessment of Graphene 2wt% Added to Li1.6Ni0.35Mn0.65O2 Half-Cell (그래핀 2wt%를 첨가한 Li1.6Ni0.35Mn0.65O2 Half-Cell의 물질 전 과정 평가)

  • CHO, KYOUNG-WON;LEE, YOUNG-HWAN;HAN, JEONG-HEUM;YU, JAE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.132-137
    • /
    • 2020
  • Lithium secondary batteries have become an important power source for portable electronic devices such as cellular phones, laptop computers. Presently, commercialized lithium-ion batteries use a LiCoO2 cathode. However, due to the high cost and environmental problems resulting from cobalt, an intensive search for new electrode materials is being actively conducted. Recently, solid solution LiMn1-xNixO2 have become attractive because of high capacity and enhanced safety at high voltages over 4.5 V. The Li1.6Ni0.35Mn0.65O2 compounds were conventionally prepared by a sol-gel method, which can produce the layered Li-Ni-Mn-O compounds with a high homogeneity. And by adding a graphene 2wt% the first charge-discharge voltage profiles was increased over Li1.6Ni0.35Mn0.65O2 compound. Also, the variation s of the discharge capacities with cycling showed a higher capacity retention rater. In this study, material lifecycle evaluation was performed to analyze the environmental impact characteristics of Li1.6Ni0.35Mn0.65O2 & graphene 2wt% half-cell manufacturing process. The software of material life cycle assessment was Gabi. Through this, environmental impact assessment was performed for each process. The environmental loads induced by Li1.6Ni0.35Mn0.65O2 & graphene 2wt% synthesis process were quantified and analyzed, and the results showed that the amount of power had the greatest impact on the environment.