• 제목/요약/키워드: Cyclin E1

검색결과 171건 처리시간 0.025초

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • 제2권3호
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells

  • Wang, Fu;Fu, Xiang-Dong;Zhou, Yu;Zhang, Yi
    • BMB Reports
    • /
    • 제42권11호
    • /
    • pp.725-730
    • /
    • 2009
  • Cyclin E1 (CCNE1), a positive regulator of the cell cycle, controls the transition of cells from G1 to S phase. In numerous human tumors, however, CCNE1 expression is frequently dysregulated, while the mechanism leading to its dysregulation remains incompletely defined. Herein, we showed that CCNE1 expression was subject to post-transcriptional regulation by a microRNA miR-16-1. This was evident at protein level of CCNE1 as well as its mRNA level. Further evident by dual luciferase reporter assay revealed that two evolutionary conserved binding sites on 3' UTR of CCNE1 were the direct functional target sites. Moreover, we showed that miR-16-1 induced G0/G1 cell cycle arrest by targeting CCNE1 and siRNA against CCNE1 partially phenocopied miR-16-1-induced cell cycle phenotype whereas substantially rescued anti-miR-16-1- induced phenotype. Together, all these results demonstrate that miR-16-1 plays a vital role in modulating cellular process in human cancers and indicate the therapeutic potential of miR-16-1 in cancer therapy.

온청음(溫淸飮)이 인체 간암세포의 세포주기 G1 Arrest에 미치는 영향 (G1 Arrest of the Cell Cycle by Onchungeum in Human Hepatocarcinoma Cells)

  • 구인모;신흥묵
    • 동의생리병리학회지
    • /
    • 제22권4호
    • /
    • pp.821-828
    • /
    • 2008
  • Onchungeum, a herbal formula, which has been used for treatment of anemia due to bleeding, discharging blood and skin disease. In the present study, it was examined the effects of extract of Onchungeum (OCE) on the growth of human hepatocarcinoma cell lines Hep3B (p53 null type) and HepG2 (p53 wild type) in order to investigate the anti-proliferative mechanism by OCE. Treatment of Hep3B and HepG2 cells to OCE resulted in the growth inhibition in a dose-dependent manner, however Hep3B cell line exhibited a relatively strong anti-proliferative activity to OEC. Flow cytometric analysis revealed that OCE treatment in Hep3B cells caused G1 phase arrest of the cell cycle, which was associated with various morphological changes in a dose-dependent fashion. RT-PCR and immunoblotting data revealed that treatment of OCE caused the down-regulation of cyclin D1 expression, however the levels of cyclin E expression were not changed by OCE. The G1 arrest of the cell cycle was also associated with the induction of Cdk inhibitor p27 by OCE. Because the p53 gene is null in Hep3B cells, it is most likely that the induction of p21 is mediated through a p53-independent pathway. Moreover, p27 detected in anti-Cdk4 and anti-Cdk2 immunoprecipitates from the OCE-treated cells, suggesting that OCE-induced p27 protein blocks Cdk kinase activities by directing binding to the cyclin/Cdk complexes. Furthermore, OCE treatment potently suppresses the phosphorylation of retinoblastoma proteins and the levels of the transcription factor E2F-1 expression. Taken together, these results indicated that the growth inhibitory effect of OCE in Hep3B hepatoma cells was associated with the induction of G1 arrest of the cell cycle through regulation of several major growth regulatory gene products.

Panaxadiol Arrests Cell Cycle by Elevating $p21^{WAF1/CIP1}$

  • Choi, Joon-Seok;Jin, Ying-Hua;Shin, Soon-A;Lee, Kwang-Yeol;Park, Jeong-Hill;Lee, Seung-Ki
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.168.1-168.1
    • /
    • 2003
  • We show that panaxadiol (PD), a ginseng saponin with a dammarane skeleton, selectively interferes with the cell cycle in human cancer cell lines. PD inhibited DNA synthesis in a dose-dependent manner with $IC_{50}$ values ranging from 0.8 $\mu$M-1.2 $\mu$M in SK-HEP-1 cells and HeLa cells. PD-treated cells were arrested at G1/S phase, shich coincided well with decreases in Cyclin A-Cdk2 activity, but not in Cyclin E-Cdk2 and Cdc2 activities. The intracellular levels of $p21^{WAF1/CIP1}$ were significantly and selectively elevated in a dose and time-dependent manners in PD-treated HeLa cells. (omitted)

  • PDF

Tumor suppressor Parkin induces p53-mediated cell cycle arrest in human lung and colorectal cancer cells

  • Byung Chul Jung;Sung Hoon Kim;Yoonjung Cho;Yoon Suk Kim
    • BMB Reports
    • /
    • 제56권10호
    • /
    • pp.557-562
    • /
    • 2023
  • Dysregulation of the E3 ubiquitin ligase Parkin has been linked to various human cancers, indicating that Parkin is a tumor suppressor protein. However, the mechanisms of action of Parkin remain unclear to date. Thus, we aimed to elucidate the mechanisms of action of Parkin as a tumor suppressor in human lung and colorectal cancer cells. Results showed that Parkin overexpression reduced the viability of A549 human lung cancer cells by inducing G2/M cell cycle arrest. In addition, Parkin caused DNA damage and ATM (Ataxia telangiectasia mutated) activation, which subsequently led to p53 activation. It also induced the p53-mediated upregulation of p21 and downregulation of cyclin B1. Moreover, Parkin suppressed the proliferation of HCT-15 human colorectal cancer cells by a mechanism similar to that in A549 lung cancer cells. Taken together, our results suggest that the tumor-suppressive effects of Parkin on lung and colorectal cancer cells are mediated by DNA damage/p53 activation/cyclin B1 reduction/cell cycle arrest.

녹용이 치주인대세포의 세포주기조절에 미치는 영향 (Effects of Cervi Parvum Cornu on the Cell Cycle Regulation in Human Periodontal Ligament Cells)

  • 유승한;최희인;김현아;김윤상;신형식;유형근
    • 동의생리병리학회지
    • /
    • 제17권1호
    • /
    • pp.157-164
    • /
    • 2003
  • Cervi Parvum Cornu(CPC) is that the young horn of deer family and has been traditionally used as a medicine in Eastern. The purpose of present study was to investigate the effects of CPC on cell cycle progression and its molecular mechanism in human periodontal ligament cells (HPOLC). In cell proliferation assay, 1 ng/ml, 10 ng/ml, 100 ng/ml, 1 ㎍/ml and 10 ㎍/ml of CPC were used, all treatment groups increased the cell growth. Maximal cell proliferation was observed in cells exposed to 100 ng/ml of CPC at 4 day, and 10 ng/ml and 100 ng/ml of CPC at 6 days. S phase was increased and G1 phase was decreased in the group treated with 100 ng/ml of CPC in cell cycle analysis. The protein levels of cyclin D1 were not changed, but the levels of cyclin E, cdk 2, cdk 4 and cdk 6 were increased. The protein levels of p21, pRb were decreased as compared to that of control group, but the levels of p53 was not changed in the cells both treated with CPC Md untreated. These results suggested that CPC increases the cell proliferation and cell cycle progression in HPDLC, which is linked to an increased cellular levels of cyclin E, cdk 2, cdk 4 and cdk 6, and decreased the levels of p53, p21.

G0/G1 Cell Cycle Arrest and Activation of Caspases in Honokiol-mediated Growth Inhibition of Human Gastric Cancer Cells

  • Kang, You-Jin;Chung, Hwa-Jin;Min, Hye-Young;Song, Ja-Young;Park, Hyen-Joo;Youn, Ui-Joung;Bae, Ki-Hwan;Kim, Yeong-Shik;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • 제18권1호
    • /
    • pp.16-21
    • /
    • 2012
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has been shown to have the anti-angiogenic, anti-invasive and cancer chemopreventive activities, but the molecular mechanism of actions has not been fully elucidated yet. In the present study, we investigated the effect of honokiol on the growth inhibitory activity in cultured SNU-638 human gastric cancer cells. We found that honokiol exerted potent antiproliferative activity against SNU-638 cells. Honokiol also arrested the cell cycle progression at the G0/G1 phase and induced the apoptotic cell death in a concentration-dependent manner. The cell cycle arrest was well correlated with the downregulation of Rb, cyclin D1, cyclin A, cyclin E, and CDK4 expression, and the induction of cyclin-dependent kinase inhibitor p27. The increase of sub-G1 peak by honokiol was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, the cleavage of poly(ADPribose) polymerase, and the sequential activation of caspase cascade. These findings suggest the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of honokiol in human gastric cancer cell.

인삼이 사람태아골모세포의 세포주기조절에 미치는 영향 (Effects of Ginseng Radix on the Cell Cycle Regulation in Human Fetal Osteoblast)

  • 김대겸;이용배;박상기;유형근;유경태;김윤철;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제33권3호
    • /
    • pp.415-437
    • /
    • 2003
  • Ginseng Radix(GR) had been used widely from oriental medicine and the effects of it have been investigated by many researchers. The purpose of present study was to investigate the effects of GR on the cell cycle progression and its molecular mechanism in human fetal osteoblast. The results were as follows. Increased cell proliferation was observed in cells exposed to 100 ng/ml, 10 ng/ml of GR-1 at 12 hours and 24 hours, 1 ${\mu}g$/ml of GR-1 at 48 hours, and 100 ${\mu}g$/ml, 10 ${\mu}g$/ml of GK-2 at 12 hours, all treatment groups of GR-2 at 24 hours(p<0.05). S phase and G1 phase was increased in the group of treated with 100 ng/ml of GR-1, with 10 ${\mu}g$/ml and 1 ${\mu}g$/ml of GR-2, with 100 ${\mu}g$/ ml and 10 ${\mu}g$/ml of GR-3 in the cell cycle analysis. The cell cycle regulation protein levels of Cyclin D1, Cyclin E, CDK 2. CDK 4 and CDK 6 were increased in the group of treated with 1 ${\mu}g$/ml and 100 ng/ml of GR-1, with 10 ${\mu}g$/ml and 1 ${\mu}g$/ml of GR-2, with 100 ${\mu}g$/ ml and 10 ${\mu}g$/ml of GR-3. On the other hand, p21 was decreased in the treatment group with 1 ${\mu}g$/ml and 100 ng/ml of GR-1, with 10 ${\mu}g$/ml and 1 ${\mu}g$/ml of GR-2, 10 ${\mu}g$/ml of GR-3, and p53 and p16 was decreased in the treatment group with 100 ng/ml of GR-1, 100 ${\mu}g$/ml and GR-3 and pRb was decreased in the all treatment groups except 1 ${\mu}g$/ml of GR-1. These results suggested that GR increases the cell proliferation and the cell cycle progression in human fetal osteoblast, which is linked to increased cell cycle regulation protein levels of Cyclin D1 , Cyclin E, CDK 2, CDK 4, CDK 6 and decreased cell cycle regulation protein levels of p21, pRb.

Garcinol, an Acetyltransferase Inhibitor, Suppresses Proliferation of Breast Cancer Cell Line MCF-7 Promoted by 17β-Estradiol

  • Ye, Xia;Yuan, Lei;Zhang, Li;Zhao, Jing;Zhang, Chun-Mei;Deng, Hua-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.5001-5007
    • /
    • 2014
  • The acetyltransferase inhibitor garcinol, a polyisoprenylated benzophenone, is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Anti-cancer activity has been suggested but there is no report on its action via inhibiting acetylation against cell proliferation, cell cycle progression, and apoptosis-inhibtion induced by estradiol ($E_2$) in human breast cancer MCF-7 cells. The main purposes of this study were to investigate the effects of the acetyltransferase inhibitor garcinol on cell proliferation, cell cycle progression and apoptosis inhibition in human breast cancer MCF-7 cells treated with estrogen, and to explore the significance of changes in acetylation levels in this process. We used a variety of techniques such as CCK-8 analysis of cell proliferation, FCM analysis of cell cycling and apoptosis, immunofluorescence analysis of NF-${\kappa}B$/p65 localization, and RT-PCR and Western blotting analysis of ac-H3, ac-H4, ac-p65, cyclin D1, Bcl-2 and Bcl-xl. We found that on treatment with garcinol in MCF-7 cells, $E_2$-induced proliferation was inhibited, cell cycle progression was arrested at G0/G1 phase, and the cell apoptosis rate was increased. Expression of ac-H3, ac-H4 and NF-${\kappa}B$/ac-p65 proteins in $E_2$-treated MCF-7 cells was increased, this being inhibited by garcinol but not ac-H4.The nuclear translocation of NF-${\kappa}B$/p65 in $E_2$-treated MCF-7 cells was also inhibited, along with cyclin D1, Bcl-2 and Bcl-xl in mRNA and protein expression levels. These results suggest that the effect of $E_2$ on promoting proliferation and inhibiting apoptosis is linked to hyperacetylation levels of histones and nonhistone NF-${\kappa}B$/p65 in MCF-7 cells. The acetyltransferase inhibitor garcinol plays an inhibitive role in MCF-7 cell proliferation promoted by $E_2$. Mechanisms are probably associated with decreasing ac-p65 protein expression level in the NF-${\kappa}B$ pathway, thus down-regulating the expression of cyclin D1, Bcl-2 and Bcl-xl.

Ginsenoside Rh2 inhibits proliferation of human promyelocytic HL-60 leukemia cells via $G_0/G_1$ phase arrest and induction of differentiation

  • Cho, Seoung-Hee;Kim, Dong-Hyun;Lee, Kyung-Tae
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2006년도 춘계학술대회
    • /
    • pp.3-12
    • /
    • 2006
  • 1 The present work was performed to investigate the effects of ginsenoside Rh2 on proliferation, cell cycle-regulation and differentiation of human leukemia HL-60 cells as well as the underlying mechanisms for these effects. 2 Ginsenoside Rh2 potently inhibited the proliferation of HL-60 cells in both a dose- and time-dependent manner with an $IC_{50}$, $20{\mu}M$. 3 DNA flow-cytometry indicated that ginsenoside Rh2 markedly induced a $G_1$ phase arrest of HL-60 cells. 4 Among the $G_1$ phase cell cycle-related proteins, the levels of cyclin-dependent kinase(CDK)4, 6 and cyclin D1, cyclin D2, cyclin D3 were reduced by ginsenoside Rh2, whereas the steadystate levels of CDK2 and cyclin E were unaffected. 5 The protein levels of a CDK inhibitor p16, $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ were markedly increased by ginsenoside Rh2. 6 Ginsenoside Rh2 markedly enhanced the binding of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$ with CDK2 and CDK6, resulting in the reduced activity of both kinases and the hypophosphorylation of Rb protein. 7 We furthermore suggest that ginsenoside Rh2 is a potent inducer of the differentiation of HL-60 cells, based on observations such as a reduction of the nitroblue tetrazolium level, an increase in the esterase activities and phagocytic activity, morphology changes, and the expression of CD11b, CD14, CD64 and CD66b surface antigens. 8 In conclusion, the onset of ginsenoside Rh2-induced the $G_0/G_1$ arrest of HL-60 cells prior to the differentiation is linked to a sharp up-regulation of the $p21^{CIP1/WAF1}$ level and a decrease in the CDK2, CDK4 and CDK6 activities. This is the first report demonstrating that ginsenoside Rh2 potently inhibits the proliferation of human promyelocytic HL-60 cells via the $G_1$ phase cell cycle arrest and differentiation induction.

  • PDF