• Title/Summary/Keyword: Cyclic shear stress ratio

Search Result 74, Processing Time 0.166 seconds

Development of Stress Based on Pore Pressure Model (응력 기반 간극수압 모델 개발)

  • Park, Du-Hee;Ahn, Jae-Kwang;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.95-107
    • /
    • 2012
  • Even though the importance of predicting build-up of pore pressure under cyclic loading is recognized, effective stress analysis is rarely performed due to difficulties in selecting the parameters for the pore pressure model. In this paper, a new stress based numerical model for predicting pore pressure under cyclic loading is developed. The main strength of the model is that it is easy-to-use, requiring only the CSR-N curve in selecting the parameters. Another advantage of the model is that it can be used for any loading pattern and therefore can be implemented in an effective stress time-domain dynamic analysis code. The accuracy of the model is validated through its comparisons with measurements in literature and laboratory test data collected in Korea. Further comparisons with another stress based pore pressure model highlighted the superiority of the proposed model.

Shear modulus and stiffness of brickwork masonry: An experimental perspective

  • Bosiljkov, Vlatko Z.;Totoev, Yuri Z.;Nichols, John M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.1
    • /
    • pp.21-43
    • /
    • 2005
  • Masonry is a composite non-homogeneous structural material, whose mechanical properties depend on the properties of and the interaction between the composite components - brick and mortar, their volume ratio, the properties of their bond, and any cracking in the masonry. The mechanical properties of masonry depend on the orientation of the bed joints and the stress state of the joints, and so the values of the shear modulus, as well as the stiffness of masonry structural elements can depend on various factors. An extensive testing programme in several countries addresses the problem of measurement of the stiffness properties of masonry. These testing programs have provided sufficient data to permit a review of the influence of different testing techniques (mono and bi-axial tests), the variations caused by distinct loading conditions (monotonic and cyclic), the impact of the mortar type, as well as influence of the reinforcement. This review considers the impact of the measurement devices used for determining the shear modulus and stiffness of walls on the results. The results clearly indicate a need to re-assess the values stated in almost all national codes for the shear modulus of the masonry, especially for masonry made with lime mortar, where strong anisotropic behaviour is in the stiffness properties.

Experiment and bearing capacity analyses of dual-lintel column joints in Chinese traditional style buildings

  • Xue, Jianyang;Ma, Linlin;Wu, Zhanjing;Zhai, Lei;Zhang, Xin
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.641-653
    • /
    • 2018
  • This paper presents experiment and bearing capacity analyses of steel dual-lintel column (SDC) joints in Chinese traditional style buildings. Two SDC interior joints and two SDC exterior joints, which consisted of dual box-section lintels, circular column and square column, were designed and tested under low cyclic loading. The force transferring mechanisms at the panel zone of SDC joints were proposed. And also, the load-strain curves at the panel zone, failure modes, hysteretic loops and skeleton curves of the joints were analyzed. It is shown that the typical failure modes of the joints are shear buckling at bottom panel zone, bending failure at middle panel zone, welds fracturing at the panel zone, and tension failure of base metal in the heat-affected zone of the joints. The ultimate bearing capacity of SDC joints appears to decrease with the increment of axial compression ratio. However, the bearing capacities of exterior joints are lower than those of interior joints at the same axial compression ratio. In order to predict the formulas of the bending capacity at the middle panel zone and the shear capacity at the bottom panel zone, the calculation model and the stress state of the element at the panel zone of SDC joints were studied. As the calculated values showed good agreements with the test results, the proposed formulas can be reliably applied to the analysis and design of SDC joints in Chinese traditional style buildings.

Cyclic Simple Shear Test Based Design Liquefaction Resistance Curve of Granular Soil (반복단순전단시험에 기반한 조립토의 설계 액상화 저항 곡선 개발)

  • Saeed-ullah, Jan Mandokhail;Park, Duhee;Kim, Hansup;Park, Ki-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.49-59
    • /
    • 2016
  • We develop liquefaction resistance curves, which represent the correlation between cyclic resistance ratio (CRR) and number of cycles (N) to estimate the build-up of residual excess pore pressure from simple shear tests performed for this study and also from published literature. The liquefaction curve is calculated from two models. The comparisons show that one of the models is not reliable because it underestimates CRR. The scatter of the data is shown to be significantly reduced when CRR is normalized to the resistance ratio at N = 15 ($CRR_{N=15}$). Use of the normalization is particularly useful because CRR can be easily estimated from field tests. From normalization, we propose mean, upper, and lower curves. The corresponding design equation and its parameters are also proposed. We believe that the proposed curves can be used for effective stress site response analyses and evaluation of the seismic performance of port structures.

A Study on the Shear Fatigue Analysis Model of Reinforced Concrete Beams (철근 콘크리트 보의 전단피로해석 모델 연구)

  • 오병환;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.389-392
    • /
    • 1999
  • Fatigue is a process of progressive permanent internal structural change in a material subjected to repeitive stresses. These change may be damaging and result in progressive growth of cracks and complete fracture if the stress repetitins are sufficiently large. For structural members subjected to cyclic loads, the continuous and irrecoverable damage processes are taking place. These processes are referred as the cumulative damage processes due to fatigue loading. Moreover, increased use of high strength concrete makes the fatigue problem more important because the cross-section and dead weight are reduced by using high strength concrete. The purpose of this study is to investigate the shear fatigue behavior of reinforced concrete beams according to shear reinforcement ratio and concrete compressive strength under repeated loadings. For this purpose, comprehensive static and fatigue tests of reinforced concrete beams were conducted. The major test variables for the fatigue teats are the concrete strength and the amount of shear reinforcements. The increase of deflections and steel strains according to load repetition has been plotted and analyzed to explore the damage accumulation phenomena of reinforced concrete beams. An analytical model for shear fatigue behavior has been introduced to analyze the damage accumulation under fatigue loads. The failure mode and fatigue lives have been also studied in the present study. The comparisons between analytical results and experimental data show good correlation.

  • PDF

Analysis of Hysteretic Behavior of R/C Members subjected to Load Reversals - Single component model having the finite size of plastic regions - (반복하중을 받는 철근콘크리트 부재의 이력거동 해석 -유한한 소성력을 갖는 일원성분 모델을 사용하여-)

  • 김윤일;이리형;서수연;천영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.6-11
    • /
    • 1990
  • Inelastic behavior of reinforced concrete members is very complex and affected by many factors. Therefore, though using the finite element method which is good to predict the response of R/C member, it has to be proceeded to model these factors appropriately which have influence on the behavioral characteristics of reinforced concrete members. The proposed model consists of the physical single component model having the finite size of plastic regions and the hysteretic rules, by regressing experimental data, which can idealize the hysteretic behavior of R/C member under inelastic cyclic loads. This study confirms the accuracy of the developed analytical model through comparison with the test results of R/C members having a variety of shear-to-depth ratio and maximum shear stress.

  • PDF

Grain Size Analysis by Hot-Cooling Cycle Thermal Stress at Y-TZP Ceramics using Full Width at Half Maximum(FWHM) of X-ray Diffraction (X-ray 회절의 반치전폭(FWHM)을 이용한 Y-TZP세라믹스에서 반복 열응력에 의한 입계크기 분석)

  • Choi, Jinsam;Park, Kyu Yeol;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.264-270
    • /
    • 2019
  • As a case study on aspect ratio behavior, Kaolin, zeolite, $TiO_2$, pozzolan and diatomaceous earth minerals are investigated using wet milling with 0.3 pai media. The grinding process using small media of 0.3 pai is suitable for current work processing applications. Primary particles with average particle size distribution D50, ${\sim}6{\mu}m$ are shifted to submicron size, D50 ${\sim}0.6{\mu}m$, after grinding. Grinding of particles is characterized by various size parameters such as sphericity as geometric shape, equivalent diameter, and average particle size distribution. Herein, we systematically provide an overview of factors affecting the primary particle size reduction. Energy consumption for grinding is determined using classical grinding laws, including Rittinger's and Kick's laws. Submicron size is obtained at maximum frictional shear stress. Alterations in properties of wettability, heat resistance, thermal conductivity, and adhesion increase with increasing particle surface area. In the comparison of the aspect ratio of the submicron powder, the air heat conductivity and the total heat release amount increase 68 % and 2 times, respectively.

Evaluation of Moment Resisting Post-Base Connection Using Multi-directional Connector (다방향 접합철물 삽입형 기둥-기초 접합부 모멘트 저항성능평가)

  • Kim, Keon-Ho;Lee, Sang-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.4
    • /
    • pp.331-337
    • /
    • 2014
  • The purpose of this paper is to evaluate the moment resistance of glulam post-to-base connections by applying quasi-static cyclic loads. The connectors consisted of inserted plates and drifted pins according to the load direction. The connection types employed in this study were total three including two unidirectional types (H, V) and the multi-directional type (M). The moment resistance of 8 mm-plate M-type is compared to 6 mm plate. Total four types of Post-to-base connection are prepared and tested under pseudo-static reversed cyclic loading. Test results showed that the yield moment of multi-directional connection is about 2 times higher than that uni-directional connections. The ductility ratio of multi-directional connection determined by EEEP was higher that that of uni-directional connection. It was becoming higher as the thickness of plate is increased. The Finite Element Analysis was conducted to estimate the stress distribution behavior of tested connections. Results showed the failure of multi-directional type were caused by the split of pined hole and the shear failure of lifted part of post.

  • PDF

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.