• 제목/요약/키워드: Cyclic shear stress

검색결과 212건 처리시간 0.03초

지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석 (Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability)

  • 허준
    • 한국농공학회논문집
    • /
    • 제60권2호
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

기존의 액상화 평가기법 밀 그 적용성에 관한 연구 (A Study on the Conventional Liquefaction Analysis and Application to Korean Liquefaction Hazard Zones)

  • 박인준;신윤섭;최재순;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.431-438
    • /
    • 1999
  • An assessment of liquefaction potential is made in principle by comparing the shear stress induced by earthquake to the liquefaction strength of the soil. In this study, a modified method based on Seed and Idriss theory is developed for evaluating liquefaction potential. The shear stress in the ground can be evaluated with seismic response analysis and the liquefaction strength of the soil can be investigated by using cyclic triaxial tests. The cyclic triaxial tests are conducted in two different conditions in order to investigate the factors affecting liquefaction strength such as cyclic shear stress amplitude and relative density. And performance of the modified method in practical examples is demonstrated by applying it to liquefaction analysis of artificial zones with dimensions and material properties similar to those in a typical field. From the result, the modified method for assessing liquefaction potential can successfully evaluate the safety factor under moderate magnitude(M=6.5) of earthquake.

  • PDF

Effects of silt contents on the static and dynamic properties of sand-silt mixtures

  • Hsiao, Darn H.;Phan, Vu T.A.
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.297-316
    • /
    • 2014
  • This paper presents a detailed study focused on investigating the effects of silt content on the static and dynamic properties of sand-silt mixtures. Specimens with a low-plastic silt content of 0, 15, 30 and 50% by weight were tested in static triaxial, cyclic triaxial, and resonant columns in addition to consolidation tests to determine such parameters as compression index, internal friction angle, cohesion, cyclic stress ratio, maximum shear modulus, normalized shear modulus and damping ratio. The test procedures were performed on specimens of three cases: constant void ratio index, e = 0.582; same peak deviator stress of 290 kPa; and constant relative density, $D_r$ = 30%. The test results obtained for both the constant-void-ratio-index and constant-relative-density specimens showed that as silt content increased, the internal friction angle, cyclic stress ratio and maximum shear modulus decreased, but cohesion increased. In testing of the same deviator stress specimens, both cohesion and internal friction angle were insignificantly altered with the increase in silt content. In addition, as silt content increased, the maximum shear modulus increased. The cyclic stress ratio first decreased as silt content increased to reach the threshold silt content and increased thereafter with further increases in silt content. Furthermore, the damping ratio was investigated based on different silt contents in three types of specimens.

실트 함유율에 따른 낙동강 모래의 반복전단거동 (Undrained Cyclic Shear Behavior for Nak-Dong River Sand Due to Silt contents)

  • 김영수;김대만;신지섭;나윤영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.311-317
    • /
    • 2008
  • This study was carried out to improve our understanding about the influence of silt content on the stress-strain of sand under cyclic loading. Soil specimens were prepared by wet-tamping method as same void ratio and specimen's silt contents on total weights was changed from 0% to 20%. Also, effects of the silt contents on the stress-strain response were studied at different anisotropic consolidation ratio, Kc=1.0, 1.5, 2.0 condition. As a result, cyclic shear strength decreased as silt contents increased in same stress ratios. In same silt contents, cyclic shear strength increased as Kc increased in lower silt contents, but in higher silt contents, it had reverse results.

  • PDF

실트질 모래지반의 응력경로를 이용한 액상화 분석 (Analysis of Liquefaction using Stress Path in Silty Sand Grounds)

  • 이송;김태훈;이민호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.239-246
    • /
    • 2000
  • It has been generally much fine contents in West Coast of Korea. When cyclic shear stress causing liquefaction was estimated as using cyclic triaxial tests in these grounds, it didn't appear linear relations between deviator stress and confining stress where σ'₃ was more than 150 kpa. Namely, due to no normalization of cyclic shear stress ratio, the errors of this is increased. Therefore, more confining stress is increased, more increment of deviator stress is decreased. So, using linear relations between tanø'/sub d/ of dynamic internal friction angle and CSR where σ'₃ was less than 150 kpa, liquefaction of these grounds was evaluated. Also, as doing detail evaluation which had carried response analysis of earthquake, this appeared good results which was well compatible with empirical methods using N-value of SPT. It was thought that these result evaluated vulnerable liquefaction area more correct than existing methods. Also, characteristics of liquefaction in West Coast grounds was compared with clean sands, with analysis of behavior of pore pressure ratio and axial strain affected by fine contents, as cyclic loading was applied.

  • PDF

반복단순전단 시험에 의한 패각질 모래의 동적 거동 (Dynamic Behaviors of Shelly Sand in Cyclic Simple Shear Test)

  • 윤여원;윤길림;최재권;김재권;김승현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1358-1366
    • /
    • 2006
  • In order to study the effects of shell contents on the liquefaction resistance of the shelly sand, NGI cyclic simple shear tests were performed for the shelly sands with shell contents of 0%, 5%, 10%, 20% and 30% under the effective vertical stress of 50kPa, 100kPa and 150kPa for 40% and 55% of relative density, respectively. Cyclic simple shear test results showed that for the low effective vertical stress, liquefaction resistance increased rapidly with the increase of shell contents in both 40% and 55% relative density. On the other hand, for the high effective vertical stress, the liquefaction resistance increased slightly in 40% relative density whereas the resistance was almost same in 55% relative density. Liquefaction resistance decreased with increasing effective vertical stress for both 40% and 55% relative density. In the same effective vertical stress and shell contents, liquefaction resistance increased with the increase of relative density of sands.

  • PDF

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

주기적(週期的) 반복하중(反復荷重)에 의한 연약점토(軟弱粘土)의 강도특성(强度特性) (Cyclic Strength Characteristics of Soft Clay)

  • 하광현
    • 대한토목학회논문집
    • /
    • 제4권4호
    • /
    • pp.49-58
    • /
    • 1984
  • 연약점토(軟弱粘土)(방콕)의 주기적(週期的) 반복하중(反復荷重)에 의(依)한 거동(擧動)을 구명(糾明)하기 위하여 부교란시료(不攪亂試料)에 대(對)한 일련(一連)의 반복하중(反復荷重)을 이용(利用)한 삼축압축시험(三軸壓縮試驗)을 시도(試圖)했다. 본(本)시험(試驗)은 포속압력(抱束壓力) 및 초기전단응력(初期剪斷應力)을 변화(變化)시켜 가면서 점토(粘土)의 전단변형(剪斷變形), 강도변화(强度變化) 등(等)을 조사(調査) 비교(比較)한다. 그 결과(結果) 초기전단응력(初期剪斷應力)이 증가(增加)함으로써 응력(應力)-변형곡선(變形曲線)은 적은 변화(變化)를 보였고, 반복하중(反復荷重)에 의(依)한 강도변화(强度變化)는 응력비(應力比)로 표현(表現)될 때 포속압력(抱束壓力)이 $1.0kgf/cm^2$이었을 때 더 컸으며, 축차응력(逐差應力)으로 표현(表現)될 경우(境遇)는 포속압력(抱束壓力)이 $1.5kgf/cm^2$이었을 때 크게 나타났다.

  • PDF

Energy-based evaluation of liquefaction potential of uniform sands

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.145-156
    • /
    • 2019
  • Since behaviors of loose, dense, silty sands vary under seismic loading, understanding the liquefaction mechanism of sandy soils continues to be an important challenges of geotechnical earthquake engineering. In this study, 36 deformation controlled cyclic simple shear tests were performed and the liquefaction potential of the sands was investigated using three different relative densities (40, 55, 70%), four different effective stresses (25, 50, 100, 150 kPa) and three different shear strain amplitudes (2, 3.5, 5%) by using energy based approach. Experiments revealed the relationship between per unit volume dissipated energy with effective stress, relative density and shear strain. The dissipate energy per unit volume was much less affected by shear strain than effective stress and relative density. In other words, the dissipated energy is strongly dependent on relative density and effective stress. These results show that the dissipated energy per unit volume is very useful and may contain the non-uniform loading conditions of the earthquake spectrum. When multiple regression analysis is performed on experiment results, a relationship is proposed that gives liquefaction energy of sandy soils depending on relative density and effective stress parameters.

연약점토의 동력학적 전단탄성계수 및 감쇠비 (Dynamic Shear Modulus and Damping Ratio of Soft Clay)

  • 하광현
    • 한국지반공학회지:지반
    • /
    • 제2권1호
    • /
    • pp.55-66
    • /
    • 1986
  • 유효구속추력, 초기전단응력, 응력비 및 반복회수등의 영향을 고려하면서 비배수조건하에 있는 연약점토시료의 동력학적 전단탄성계수 및 감쇠비의 변화특성을 파악하기 위하여 일련의 삼축롱륜시험을 수행하였다. 그 결과, 초기전단응력 및 구속압력이 동력학적 토성치에 미치는 영향은 크지 않았지만, 축방향 변형의 증가에 따라 전단탄성계수는 감소하고 감쇠하는 증가하는 영향을 나타낸다. 또한, 전단탄성 계수는 Marcuson et al(3)과 Kokusho et al.(4)에 의해 제안된 경험식으로 얻어진 범위내에 분포되었고, 감쇠비는 Kokusho et al.(4)과 Ishihara et al.(9)에 의해 얻어진 범위에 분포됨을 보이고 있다.

  • PDF