• Title/Summary/Keyword: Cyclic revision

Search Result 2, Processing Time 0.016 seconds

Monitoring Management Plan for Changed Region with respect to Revision Periods (변화지역에 대한 갱신주기별 모니터링 운영방안)

  • Han, You Kyung;Yeom, Jun Ho;Kim, Yong Il;Lee, Byoung Kil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.401-410
    • /
    • 2013
  • Due to the increasing need for spatial information, there have been a lot of research related with monitoring and revision of changed regions for the acquisition of the accurate and latest information. In this paper, the optimal monitoring management plan for changed regions with respect to the revision periods was proposed. For this purpose, the representative monitoring methods, which are based on database, professional manpower and crowdsourcing of continuous revision, and aerial imagery, satellite imagery and LiDAR of cyclic revision, were investigated. Then, the properties and application status of monitoring systems in Korea were illustrated according to the methods. Finally, the optimal monitoring management plan for continuous and cyclic revisions was suggested through the comparison of properties and revisionable objects of each method. From the result, it was shown to be appropriate for the optimal monitoring management plan of continuous revision as using Internet-Architectural Information System (e-AIS) database cooperated with professional manpower and crowdsourcing, and cyclic revision as using domestic high-resolution satellite images and LiDAR data processed semi-automatically.

A proposal for improving the behavior of CBF braces using an innovative flexural mechanism damper, an experimental and numerical study

  • Ghamari, Ali;Jeong, Seong‐Hoon
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.455-466
    • /
    • 2022
  • Despite the considerable lateral stiffness and strength of the Concentrically Braced Frame (CBF), it suffers from low ductility and low seismic dissipating energy capacity. The buckling of the diagonal members of the CBF systems under cyclic loading ended up to the shortcoming against seismic loading. Comprehensive researches have been performing to achieve helpful approaches to prevent the buckling of the diagonal member. Among the recommended ideas, metallic damper revealed a better success than other ideas to enhance the behavior of CBFs. While metallic dampers improve the behavior of the CBF system, they increase constructional costs. Therefore, in this paper, a new steel damper with flexural mechanism is proposed, which is investigated experimentally and numerically. Also, a parametrical revision was carried out to evaluate the effect of thickness, slenderness ratio, angle of the main plate, and height of the main plates on the proposed damper. For the parametrical study, 45 finite element models were analyzed and considered. Experimental results, as well as the numerical results, indicated that the proposed damper enjoys a stable hysteresis loop without any degradation up to a high rotation equal to around 31% that is significantly considerable. Moreover, it showed a suitable performance in case of ductility and energy dissipating. Besides, the necessary formulas to design the damper, the required relations were proposed to design the elements outside the damper to ensure the damper acts as a ductile fuse.