• Title/Summary/Keyword: Cyclic pressure

Search Result 394, Processing Time 0.022 seconds

Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

  • Henderson, David J.;Ginger, John D.;Morrison, Murray J.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.383-400
    • /
    • 2009
  • Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

Developement and application of Statistical Hydrofracturing Data Processing Program (통계적 접근법에 의한 수압파쇄 자료해석용 전산 프로그램 개발 및 적용)

  • 류동우;최성웅;이희근
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.209-222
    • /
    • 1996
  • Shut-in pressure, reopenting pressure and fracture orientation are very important parameters to be evaluated precisely in in-situ stress measurement by hydraulic fracturing. Graphical methods on pressure-time curves have been conventionally used, even though these are seriously dependent on subjectivity of interpreters. So there have been many demands on new method to objectivity in determining parameters. We have developed integrated hydrofracturing data processing program (HYDFRAC), based on nonlinear regression analysis and can be invoked under the Window graphical user interface. HYDFRAC consiste of three routines, that is shut-in pressure routine, reopening pressure routine, and fracture delineation routine. Each of routines include independent modules according to parameter determination methods. Its application to field tests ensured both objectivity and facility in determining of hydraulic fracturing parameters. Determining shut-in pressures at each pressurization cycles, we adopted the exponential pressure-decay method(EPD method), the bilinear pressure-decay-rate method (PDR method), and the tangent intersection method in order to find the pressurization-cyclic tendency of shut-in pressures. The estimated pressure by PDR method exists in the range of the upper and lower values by EPD method, and lies near to the upper value more than the lower. Being the pressurization cycle increased, the range of upper and lower limits come to be stabilized gradually. By graphical superposition method and bilinear pressure-accumulated volume method, reopening pressures were determined. Vertical and inclined fracture attitudes were determined by applying the directional statistics and sinusoidal curve fitting, respectively. The results of evaluation of hydrofracturing parameters showed that statistical methods could enhance the objectivity better than graphical methods.

  • PDF

Effects of Cyclic Nucleotides and Glipizide on the Cardiovascular Response of Baclofen in the Rats (흰쥐의 척수에서 Cyclic Nucleotides 및 Glipizide가 Baclofen의 심혈관반응에 미치는 영향)

  • Koh, Hyun-Chul;Ha, Ji-Hee;Shin, In-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.647-655
    • /
    • 1997
  • The purpose of present study is to investigate the influence of a spinal gamma-aminobutyric acid B($GABA_B$) receptor on a central regulation of blood pressure(BP) and heart rate(HR), and to define its mechanism in the spinal cord. In urethane-anesthetized, d-tubocurarine-paralyzed and artificially ventilated male Sprague-Dawley rats, intrathecal administration of drugs were carried out using injection cannula(33-gauge stainless steel) through the guide cannula(PE 10) which was inserted intrathecally at lower thoracic level through the puncture of a atlantooccipital membrane. Intrathecal injection of an $GABA_B$ receptor agonist, baclofen(30, 60, 100 nmol) decreased both BP and HR dose-dependently. Pretreatment with 8-bromo-cAMP(50 nmol), a cAMP analog, or glipizide(50 nmol), a ATP-sensitive $K^+$ channel blocker, attenuated the depressor and bradycardic effects of baclofen(100 nmol), but not with 8-bromo-cGMP(50 nmol), a cGMP analog. These results suggest that the $GABA_B$ receptor in the spinal cord plays an inhibitory role in central cardiovascular regulation and that this depressor and bradycardic actions are mediated by the decrease of cAMP via the inhibition of adenylate cyclase and the opening of $K^+$ channel.

  • PDF

An Approximate Analytical Solution to the Ideal Adiabatic Model of Stirling Engines (스터링기관의 이상적인 단열모델에 대한 해석적 근사해)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.172-178
    • /
    • 1990
  • To predict the qualitative performance characteristics of Stirling Engines, an analytical approach to the Ideal Adiabatic Model set up by Urieli et al. has been treated. First, volume variations of both the expansion and the compression cylinders are approximated to piecewise linear function of the crank angle, which make it possible to specify the mass flow direction of each cylinder a priori to solve a set of basic equation. In consequences, an engine cycle can be considered as a combination of 4-type fundamental process. For each process, pressure is obtained as a solution of the algebraic equation. Application of the cyclic steady condition to the whole cycle completes the analysis. Further investigations result in analytical expressions for cyclic heat and work in terms of dependent variables determined from the pressure. The results are expected useful in establishing the preliminary design conditions of Stirling Engines.

An experimental investigation on dynamic properties of various grouted sands

  • Hsiao, Darn-Horng;Phan, Vu To-Anh;Huang, Chi-Chang
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • Cyclic triaxial and resonant column tests were conducted to understand the beneficial effects of various grouted sands on liquefaction resistance and dynamic properties. The test procedures were performed on a variety of grouted sands, such as silicate-grouted sand, silicate-cement grouted sand and cement-grouted sand. For each type of grout, sand specimen was mixed with a 3.5% and 5% grout by volume. The specimens were tested at a curing age of 3, 7, 28 and 91 days, and the results of the cyclic stress ratio, the maximum shear modulus and the damping ratio were obtained during the testing program. The influence of important parameters, including the type of grout, grout content, shear strain, confining pressure, and curing age, were investigated. Results indicated that sodium silicate grout does not improve the liquefaction resistance and shear modulus; however, silicate-cement and cement grout remarkably increased the liquefaction resistance and shear modulus. Shear modulus decreased and damping ratio increased with an increase in the amplitude of shear strain. The effect of confining pressure on clean sand and sodium silicate grouted sand was found to be insignificant. Furthermore, a nonlinear regression analysis was used to prove the agreement of the shear modulus-shear strain relation presented by the hyperbolic law for different grouted sands, and the coefficients of determination, $R^2$, were nearly greater than 0.984.

Effects of KATP Channel Blocker, cAMP and cGMP on the Cardiovascular Response of Adenosine A1 Agonist in the Spinal Cord of the Rats

  • Shin In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • This study was performed to investigate the influence of the spinal adenosine $A_1$ receptors on the central regulation of blood pressure (BP) and heart rate (HR), and to define whether its mechanism is mediated by cyclic AMP (cAMP), cyclic GMP (cGMP) or potassium channel. Intrathecal (i.t.) administration of drugs at the thoracic level were performed in anesthetized, artificially ventilated male Sprague-Dawley rats. I.t. injection of adenosine $A_1$ receptor agonist, $N^6$-cyclohexyladenosine (CHA; 1, 5 and 10 nmol) produced dose dependent decrease of BP and HR and it was attenuated by pretreatment of 50 nmol of 8-cyclopentyl-1,3-dimethylxanthine, a specific adenosine $A_1$ receptor antagonist. Pretreatment with a cAMP analogue, 8-bromo-cAMP, also attenuated the depressor and bradycardiac effects of CHA (10 nmol), but not with cGMP analogue, 8-bromo-cGMP. Pretreatment with a ATP-sensitive potassium channel blocker, glipizide (20 nmol) also attenuated the depressor and bradycardiac effects of CHA (10 nmol). These results suggest that adenosine $A_1$ receptor in the spinal cord plays an inhibitory role in the central cardiovascular regulation and that this depressor and bradycardiac actions are mediated by cAMP and potassium channel.

Strain-based Damage Evaluation of Specimens under Large Seismic Loads (대형 지진하중에 대한 시편의 변형률기반 손상평가)

  • Kweon, Hyeong Do;Heo, Eun Ju;Lee, Jong Min;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.24-31
    • /
    • 2018
  • In this paper, specimen tests with simulated large seismic conditions have been carried out to investigate damage characteristics such as structural deformation and crack initiation under seismic loading. The mechanical behavior of the specimens is predicted by numerical simulations and the strain-based damage evaluations are performed. Finite element analyses of the specimens under the simulated seismic loading at room and operating temperatures were carried out for low alloy steel and stainless steel materials. Peak strain amplitude, cumulative fatigue damage and cumulative strain limit damage are calculated considering the nature of cyclic loading. In all cases, the allowable damage criteria are exceeded at the time of observing cracks visually in the tests. Therefore, it is confirmed that the material behavior due to the large seismic loads can be predicted by the numerical method and the structural damage of the materials can be evaluated conservatively based on the strain criteria.

Bi-linear Stress-Strain Curves for Considering Cyclic Hardening Behavior of Materials in the Nonlinear FE Analysis under Seismic Loading Conditions (지진하중 조건의 비선형 유한요소해석에서 반복경화 거동 고려를 위한 Bi-linear 응력-변형률 곡선)

  • Jeong, Hyun Joon;Kim, Jin Weon;Kim, Jong Sung;Koo, Gyeong Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.59-68
    • /
    • 2018
  • This study compares true stress-true strain curves obtained by tensile tests of various piping materials with bi-linear stress-strain approximation suggested in the JSME Code Case(CC) Draft, a guideline for piping seismic inelastic response analysis. Based on the comparisons, the reliability of the bi-linear approximation is evaluated. It is found that bi-linear stress-strain curve of TP316 stainless steel is in good agreement with its true stress-true strain curve. However, Bi-linear stress-strain curves of TP304 stainless steel and carbon steels determined by the approximation cannot appropriately estimate their stress-strain behavior. Accordingly new bi-linear approximations for carbon steels and low-alloy steels are proposed. The proposed bi-linear approximations for carbon and low-alloy steels, which include the temperature effect on strength and hardening of material, estimate their stress-strain behavior reasonably well.

Sensitivity Analysis of Strain on Notches under Cyclic Loading to 2-D Finite Element Density in Elasto-Plastic Finite Element Analysis (탄소성 유한요소해석시 2차원 유한요소 밀도에 대한 반복하중이 작용하는 노치부의 변형률의 민감도 분석)

  • Jong-Sung Kim;Hyun-Su Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • This paper presents sensitivity analysis results of strain on notches under cycling loading to 2-D finite element density considering plasticity. Cylindrical notched specimens having some stress concentrations were modeled with 2-D axisymmetrical finite element having various finite element densities. Elasto-plastic finite element analysis was performed for the various finite element models subjected to cycling loading considering plasticity. The finite element analysis results were compared to investigate sensitivity of the finite element analysis variables such as von-Mises effective stress, accumulated equivalent plastic strain, and equivalent plastic strain to 2-D finite element density. As a result of the comparison, it was found that the accumulated equivalent plastic strain is more sensitive than the others whereas the von-Mises effective stress is much less sensitive.

Turbofan and Pylon Flowfields Interaction in Turbofan Engines (터보팬엔진의 터보팬과 파일론 유동장 간섭에 관한 수치적 연구)

  • Joo, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1164-1172
    • /
    • 1998
  • The three dimensional numerical method using actuator disk blade row model is applied for calculating the flowfield interaction between an outlet guide vane (OGV) and a pylon in a typical civil turbofan engine. The static pressure distortion produced by the pylon is decaying upstream but is still felt at the turbofan exit, and hence can significantly affect the fan performance. The OGV amplifies the static pressure perturbation decaying upstream. The calculation results show that cyclic OGV which consists of three types of blades with different exit angles can reduce more than half of the asymmetries of total pressure and static pressure propagated through the OGV with uniform exit blade angle.