• Title/Summary/Keyword: Cyclic dipeptides

Search Result 6, Processing Time 0.017 seconds

In Vitro Activity of Cyclic Dipeptides Against Gram-Positive and Gram-Negative Anaerobic Bacteria and Radioprotective Effect on Lung Cells

  • RHEE KI-HYEONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.158-162
    • /
    • 2006
  • Cyclic dipeptides isolated from Streptomyces sp. have been shown to have antimicrobial activity as well as other potentially useful biological activities. The purpose of this study was to compare the in vitro activity of two cyclic dipeptides combined against anaerobic bacteria with the activity of other antimicrobial agents. Specifically, the in vitro activity of the combination of two cyclic dipeptides was investigated against 140 clinical isolates of anaerobic bacteria by the agar dilution method and was compared with that of erythromycin, cefoxitin, imipenem, clindamycin, and metronidazole. The cyclic dipeptide combination and imipenem were the most active antimicrobial agents tested. In addition, the cyclic dipeptide combination had a radioprotective effect on five normal human lung fibroblast cells, showing survival rates higher $(>90\%)$ than either of the two cyclic dipeptides alone $(<80\%)$.

Antimicrobial Cyclic Dipeptides from Japanese Quail (Coturnix japonica) Eggs Supplemented with Probiotic Lactobacillus plantarum

  • Sa-Ouk Kang;Min-Kyu Kwak
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.314-329
    • /
    • 2024
  • Fifteen cyclic dipeptides (CDPs) containing proline, one cyclo(Phe-Ala) without proline, and a non-peptidyl ᴅⳑ-3-phenyllactic acid were previously identified in the culture filtrates of Lactobacillus plantarum LBP-K10, an isolate from kimchi. In this study, we used Japanese quail (Coturnix japonica) eggs to examine the effects of probiotic supplementation on the antimicrobial CDPs extracted from quail eggs (QE). Eggshell-free QE were obtained from two distinct groups of quails. The first group (K10N) comprised eggs from unsupplemented quails. The second group (K10S) comprised eggs from quails supplemented with Lb. plantarum LBP-K10. The QE samples were extracted using methylene chloride through a liquid-liquid extraction process. The resulting extract was fractionated into 16 parts using semi-preparative high-performance liquid chromatography. Two fractions, Q6 and Q9, were isolated from K10S and identified as cis-cyclo(ⳑ-Ser-ⳑ-Pro) and cis-cyclo(ⳑ-Leu-ⳑ-Pro). The Q9 fraction, containing cis-cyclo(ⳑ-Leu-ⳑ-Pro), has shown significant inhibitory properties against the proliferation of highly pathogenic multidrug-resistant bacteria, as well as human-specific and phytopathogenic fungi. Some of the ten combinations between the remaining fourteen unidentified fractions and two fractions, Q6 and Q9, containing cis-cyclo(ⳑ-Ser-ⳑ-Pro) and cis-cyclo(ⳑ-Leu-ⳑ-Pro) respectively, demonstrated a significant increase in activity against multidrug-resistant bacteria only when combined with Q9. The activity was 7.17 times higher compared to a single cis-cyclo(ⳑ-Leu-ⳑ-Pro). This study presents new findings on the efficacy of proline-containing CDPs in avian eggs. These CDPs provide antimicrobial properties when specific probiotics are supplemented.

Bioactive Cyclic Dipeptides from a Marine Sponge-Associated Bacterium, Psychrobacter sp.

  • Li, Huayue;Lee, Byung-Cheol;Kim, Tae-Sung;Bae, Kyung-Sook;Hong, Jong-Ki;Choi, Sang-Ho;Bao, Baoquan;Jung, Jee-Hyung
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2008
  • A bacterial strain with good antibacterial activities against Staphylococus aureus and Escherichia coli was isolated from a marine sponge Stelleta sp., and it was identified as a Psychrobacter sp. by comparative 16S rDNA sequence analysis. In our search for bioactive secondary metabolites from this psychrophillic and halotolerent bacterium, sixteen cyclic dipeptides (1-16) were isolated and their structures were identified on the basis of NMR analysis. In the test of the compounds for the protective effect against Vibrio vulnificusinduced cytotoxicity in human intestinal epithelial cells, cyclo-(L-Pro-L-Phe) (5) exhibited significant protective effect. Compounds 2, 6, and 11, which contain D-amino acid, were first isolated from bacteria.

Cyclic Dipeptides from Bacillus vallismortis BS07 Require Key Components of Plant Immunity to Induce Disease Resistance in Arabidopsis against Pseudomonas Infection

  • Noh, Seong Woo;Seo, Rira;Park, Jung-Kwon;Manir, Md. Maniruzzaman;Park, Kyungseok;Sang, Mee Kyung;Moon, Surk-Sik;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.402-409
    • /
    • 2017
  • Cyclic dipeptides (CDPs) are one of the simplest compounds produced by living organisms. Plant-growth promoting rhizobacteria (PGPRs) also produce CDPs that can induce disease resistance. Bacillus vallismortis strain BS07 producing various CDPs has been evaluated as a potential biocontrol agent against multiple plant pathogens in chili pepper. However, plant signal pathway triggered by CDPs has not been fully elucidated yet. Here we introduce four CDPs, cyclo(Gly-L-Pro) previously identified from Aspergillus sp., and cyclo(L-Ala-L-Ile), cyclo(L-Ala-L-Leu), and cyclo(L-Leu-L-Pro) identified from B. vallismortis BS07, which induce disease resistance in Arabidopsis against Pseudomonas syringae infection. The CDPs do not directly inhibit fungal and oomycete growth in vitro. These CDPs require PHYTOALEXIN DEFICIENT4, SALICYLIC ACID INDUCTION DEFICIENT2, and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 important for salicylic acid-dependent defense to induce resistance. On the other hand, regulators involved in jasmonate-dependent event, such as ETHYLENE RECEPTOR1, JASMONATE RESPONSE1, and JASMONATE INSENSITIVE1, are necessary to the CDP-induced resistance. Furthermore, treatment of these CDPs primes Arabidopsis plants to rapidly express PATHOGENESIS-RELATED PROTEIN4 at early infection phase. Taken together, we propose that these CDPs from PGPR strains accelerate activation of jasmonate-related signaling pathway during infection.

Inhibitory Effect Against Akt by Cyclic Dipeptides Isolated from Bacillus sp.

  • Hong, Sung-Won;Moon, Byoung-Ho;Yong, Yeon-Joong;Shin, Soon-Young;Lee, Young-Han;Lim, Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.682-685
    • /
    • 2008
  • Among thirteen strains of the genus Bacillus isolated from Shrimp-jeotkal in our laboratory, a strain BA34 showing good antifungal activity against Phytophthora infestans in a previous experiment was tested for the inhibitory effect against Akt, protein kinase B. Since Akt is known to play an important role in controlling apoptosis, its inhibitors can be used as potential apoptosis-inducing agents in the treatment of cancer. Two active compounds were isolated and their structures were determined. They have similar structures, despite showing different inhibitory effects. In order to elucidate the reasons for these different effects, three-dimensional studies were carried out.

Minority report; Diketopiperazines and Pyocyanin as Quorum Sensing Signals in Pseudomonas aeruginosa (Minority report; Pseudomonas aeruginosa의 정족수 인식(쿼럼 센싱) 신호물질로써의 Diketopiperazines과 Pyocyanin)

  • Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • Pseudomonas aeruginosa is an opportunistic human pathogen, causing a wide variety of infections including cystic fibrosis, microbial keratitis, and burn wound infections. The cell-to-cell signaling mechanism known as quorum sensing (QS) plays a key role in these infections and the QS systems of P. aeruginosa have been most intensively studied. While many literatures that introduce the QS systems of P. aeruginosa have mostly focused on two major acyl-homo serine lactone (acyl-HSL) QS signals, N-3-oxododecanoyl homoserine lactone (3OC12) and N-butanoyl homoserine lactone (C4), several new signal molecules have been discovered and suggested for their significant roles in signaling and virulence of P. aeruginosa. One of them is PQS (Pseudomonas quinolone signal; 2-heptyl-3-hydroxy-4-quinolone), which is now considered as a well-characterized major signal meolecule of P. aeruginosa. In addition, recent researches have also suggested some more putative signal molecules of P. aeruginosa, which are diketopiperazines (DKPs) and pyocyanin. DKPs are cyclic dipeptides and structurally diverse depending on what amino acids are involved in composition. Some DKPs from the culture supernatant of P. aeruginosa are suggested as new diffusible signal molecules, based on their ability to activate Vibrio fischeri LuxR biosensors that are previously considered specific for acyl-HSLs. Pyocyanin (1-hydroxy-5-methyl-phenazine), one of phenazine derivatives produced by P. aeruginosa is a characteristic blue-green pigment and redox-active compound. This has been recently suggested as a terminal signaling factor to upregulate some QS-controlled genes during stationary phase under the mediation of a transcription factor, SoxR. Here, details about these newly emerging signaling molecules of P. aeruginosa are discussed.