• Title/Summary/Keyword: Cyclic alternating pattern

Search Result 3, Processing Time 0.021 seconds

Cyclic Alternating Pattern : Implications for Insomnia (불면증에서 순환교대파형의 의미)

  • Cyn, Jae-Gong
    • Sleep Medicine and Psychophysiology
    • /
    • v.17 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • The cyclic alternating pattern (CAP) is a periodic EEG activity in NREM sleep, characterized by sequences of transient electrocortical events that are distinct from background EEG activities. A CAP cycle consists of two periodic EEG features, phase A and subsequent phase B whose durations are 2-60 s. At least two consecutive CAP cycles are required to define a CAP sequence. The CAP phase A is a phasic EEG event, such as delta bursts, vertex sharp transients, K-complex sequences, polyphasic bursts, K-alpha, intermittent alpha, and arousals. Phase B is repetitive periods of background EEG activity. The absence of CAP more than 60 seconds or an isolated phase A is classified as non-CAP. Phase A activities can be classified into three subtypes (A1, A2, and A3), based on the amounts of high-voltage slow waves (EEG synchrony) and low-amplitude fast rhythms (EEG desynchrony). CAP rate, the percentage of CAP durations in NREM sleep is considered to be a physiologic marker of the NREM sleep instability. In insomnia, the frequent discrepancy between self-reports and polysomnographic findings could be attributed to subtle abnormalities in the sleep tracing, which are overlooked by the conventional scoring methods. The conventional scoring scheme has superiority in analysis of macrostructure of sleep but shows limited power in finding arousals and transient EEG events that are major component of microstructure of sleep. But, it has recently been found that a significant correlation exists between CAP rate and the subjective estimates of the sleep quality in insomniacs and sleep-improving treatments often reduce the amount of CAP. Thus, the extension of conventional sleep measures with the new CAP variables, which appear to be the more sensitive to sleep disturbance, may improve our knowledge on the diagnosis and management of insomnia.

  • PDF

Diagnostic and Clinical Differences in Obstructive Sleep Apnea Syndrome and Upper Airway Resistance Syndrome (폐쇄성 수면 무호흡 증후군과 상기도 저항 증후군의 진단적 및 임상적 차이)

  • Choi, Young-Mi
    • Sleep Medicine and Psychophysiology
    • /
    • v.18 no.2
    • /
    • pp.63-66
    • /
    • 2011
  • It has been controversial whether upper airway resistance syndrome (UARS) is a distinct syndrome or not since it was reported in 1993. The International Classification of Sleep Disorders classified UARS under obstructive sleep apnea syndrome (OSAS) in 2005. UARS can be diagnosed when the apnea-hypopnea index (AHI) is fewer than 5 events per hour, the simultaneously calculated respiratory disturbance index (RDI) is more than 5 events per hour due to abnormal non-apneic non-hypopneic respiratory events accompanying respiratory effort related arousals (RERAs), and oxygen saturation is greater than 92% at termination of an abnormal breathing event. Although esophageal pressure measurement remains the gold standard for detecting subtle breathing abnormality other than hypopnea and apnea, nasal pressure transducer has been most commonly used. RERAs include phase A2 of cyclical alternating patterns (CAPs) associated with EEG changes. Symptoms of OSAS can overlap with UARS, but chronic insomnia tends to be more common in UARS than in OSAS and clinical symptoms similar with functional somatic syndrome are also more common in UARS. In this journal, diagnostic and clinical differences between UARS and OSAS are reviewed.

Novel approach to assessing the primary stability of dental implants under functional cyclic loading in vitro: a biomechanical pilot study using synthetic bone

  • Jean-Pierre Fischer;Stefan Schleifenbaum;Felicitas Gelberg;Thomas Barth;Toni Wendler;Sabine Loffler
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.3
    • /
    • pp.189-204
    • /
    • 2024
  • Purpose: This pilot study was conducted to develop a novel test setup for the in vitro assessment of the primary stability of dental implants. This was achieved by characterising their long-term behaviour based on the continuous recording of micromotions resulting from dynamic and cyclic loading. Methods: Twenty screw implants, each 11 mm in length and either 3.8 mm (for premolars) or 4.3 mm (for molars) in diameter, were inserted into the posterior region of 5 synthetic mandibular models. Physiological masticatory loads were simulated by superimposing cyclic buccal-lingual movement of the mandible with a vertically applied masticatory force. Using an optical 3-dimensional (3D) measuring system, the micromotions of the dental crowns relative to the alveolar bone resulting from alternating off-centre loads were concurrently determined over 10,000 test cycles. Results: The buccal-lingual deflections of the dental crowns significantly increased from cycle 10 to cycle 10,000 (P<0.05). The deflections increased sharply during the first 500 cycles before approaching a plateau. Premolars exhibited greater maximum deflections than molars. The bone regions located mesially and distally adjacent to the loaded implants demonstrated deflections that occurred synchronously and in the same direction as the applied loads. The overall spatial movement of the implants over time followed an hourglass-shaped loosening pattern with a characteristic pivot point 5.5±1.1 mm from the apical end. Conclusions: In synthetic mandibular models, the cyclic reciprocal loading of dental implants with an average masticatory force produces significant loosening. The evasive movements observed in the alveolar bone suggest that its anatomy and yielding could significantly influence the force distribution and, consequently, the mechanical behaviour of dental implants. The 3D visualisation of the overall implant movement under functional cyclic loading complements known methods and can contribute to the development of implant designs and surgical techniques by providing a more profound understanding of dynamic bone-implant interactions.