• Title/Summary/Keyword: Cyclic Treatment

Search Result 406, Processing Time 0.025 seconds

Anti-platelet Effects of Artemisinin through Regulation of Cyclic Nucleotide on Collagen-induced human Platelets

  • Dong-Ha Lee
    • Biomedical Science Letters
    • /
    • v.30 no.3
    • /
    • pp.162-168
    • /
    • 2024
  • The discovery of a novel substance capable of regulating or suppressing platelet aggregation holds significant promise for the prevention and treatment of cardiovascular diseases. Artemisinin, a compound derived from plants like Artemisia or Scopolia, has demonstrated potential across various fields, including anticancer and Alzheimer's disease research. However, its specific role and mechanisms in influencing platelet activation and thrombus formation remain incompletely understood. This study delves into elucidating how artemisinin affects platelet activation and thrombus formation. Results revealed a significant increase in cAMP production with varying doses of artemisinin, alongside notable phosphorylation of VASP and IP3R-both substrates for cAMP-dependent kinase. This phosphorylation led to the inhibition of Ca2+ mobilization from the dense tubular system, consequently reducing platelet activity via αIIb/β3 inactivation and suppressing fibrinogen binding. Furthermore, artemisinin exhibited inhibition of thrombin-induced thrombus formation. These findings suggest that artemisinin holds promise as an effective prophylactic and therapeutic agent against cardiovascular diseases, specifically targeting abnormal platelet activation and thrombus formation.

Cyclic fatigue resistance of M-Pro and RaCe Ni-Ti rotary endodontic instruments in artificial curved canals: a comparative in vitro study

  • Feky, Hadeer Mostafa El;Ezzat, Khalid Mohammed;Bedier, Marwa Mahmoud Ali
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.4
    • /
    • pp.44.1-44.11
    • /
    • 2019
  • Objectives: To compare the flexural cyclic fatigue resistance and the length of the fractured segments (FLs) of recently introduced M-Pro rotary files with that of RaCe rotary files in curved canals and to evaluate the fracture surface by scanning electron microscopy (SEM). Materials and Methods: Thirty-six endodontic files with the same tip size and taper (size 25, 0.06 taper) were used. The samples were classified into 2 groups (n = 18): the M-Pro group (M-Pro IMD) and the RaCe group (FKG). A custom-made simulated canal model was fabricated to evaluate the total number of cycles to failure and the FL. SEM was used to examine the fracture surfaces of the fragmented segments. The data were statistically analyzed and comparisons between the 2 groups for normally distributed numerical variables were carried out using the independent Student's t-test. A p value less than 0.05 was considered to indicate statistical significance. Results: The M-Pro group showed significantly higher resistance to flexural cyclic fatigue than the RaCe group (p < 0.05), but there was no significant difference in the FLs between the 2 groups (p ≥ 0.05). Conclusions: Thermal treatment of nickel-titanium instruments can improve the flexural cyclic fatigue resistance of rotary endodontic files, and the M-Pro rotary system seems to be a promising rotary endodontic file.

Comparison of mechanical properties of nickel-titanium rotary files: Aurum Blue vs. Aurum Pro (니켈티타늄 전동 파일의 기계적 특성 비교: Aurum Blue vs. Aurum Pro)

  • Kwak, Sang Won;Ha, Jung-Hong;Ahn, Sang Mi;Kim, Hyeon-Cheol
    • The Journal of the Korean dental association
    • /
    • v.57 no.11
    • /
    • pp.672-678
    • /
    • 2019
  • AIM: The purpose of this study was to evaluate and compare the torsional fracture resistances, cyclic fatigue resistance, and bending stiffness of two nickel-titanium (NiTi) rotary instruments made of different heat-treated alloy: Aurum Blue (heat-treated) and Aurum Pro (conventional). Methods: Forty-five Aurum Blue and Aurum Pro NiTi files were selected for the three mechanical tests (n=15). For the torsional resistance test, 3 mm file tip was fixed and the shaft was driven clockwise at 2 rpm until fracture occurred by using a customized device. Cyclic fatigue resistance was evaluated by rotating instruments in artificial canal with dynamic mode. Bending stiffness was tested by observation of the bending moment on attaining a 45° bend. The results were analyzed by student-t tests at a significance level of 95%. The fractured surface of each groups were examined under a scanning electron microscope (SEM). Results: Aurum Blue showed significantly higher toughness, ultimate strength, distortion angle, and number of cycles to failure than those of Aurum Pro (p < 0.05). However, Aurum Blue and Aurum Pro did not differ significantly in terms of bending stiffness. SEM showed typical topographic appearances of the cyclic fatigue and torsional fracture. Conclusions: Under the limitations of this study, heat-treated instruments showed higher flexibility and fracture resistances than conventional NiTi instruments.

  • PDF

Effect of crystallinity on the electrochemical properties of carbon black electrodes

  • Yoo, Hye-Min;Heo, Gun-Young;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.252-255
    • /
    • 2011
  • Carbon-based electric double-layer capacitors are being evaluated as potential energy-storage devices in an expanding number of applications. In this study, samples of carbon black (CB) treated at different temperatures ranging from $650^{\circ}C$ to $1100^{\circ}C$ were used as electrodes to improve the efficiency of a capacitor. The surface properties of the heat-treated CB samples were characterized by X-ray photoelectron spectroscopy and X-ray diffraction. The effect of the heat-treatment temperature on the electrochemical behaviors was investigated by cyclic voltammetry and in galvanostatic charge-discharge experiments. The experimental results showed that the crystallinity of the CBs increased as the heat-treatment temperature increased. In addition, the specific capacitance of the CBs was found to increase with the increase in the heat-treatment temperature. The maximum specific capacitance was 165 $F{\cdot}g-1$ for the CB sample treated at $1000^{\circ}C$.

HISTAMINE RELEASE INDUCED BY DENDROASPIS NATRIURETIC PEPTIDE FROM RAT PERITONEAL MAST CELLS (흰쥐 복강 비만세포에서 Dendroaspis natriuretic peptide에 의한 히스타민 유리)

  • Kim, Jae-Gon;Hur, Sun;Baik, Byeoung-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.72-81
    • /
    • 2001
  • Dendroaspis natriuretic peptide (DNP), recently isolated from the venom of the green Mamba snake Dendroaspis angusticeps, is a 38-amino acid peptide containing a 17-amino acid disulfide ring structure similar to that of the natriuretic peptide family. The natriuretic peptide family was known to induce histamine release from human and rat mast cells, but there are no published data concerning the effects of DNP on histamine release from mast cells. The purpose of this study is to investigate whether DNP induces the histamine release from rat peritoneal mast cells (RMPCs) and to determine the mechanism of DNP-induced histamine release from RPMCs. After treatment of the various doses of DNP in RPMCs, the mast cell degranulation was observed with inverted microscopy and the histamine release was measured by radio-enzymatic assay. Calcium uptake and intracellular cyclic GMP level were measured by radioimmunoassays. DNP induced the mast cell degranulation. DNP released the histamine and increased the calcium uptake and the level of intracellular cyclic GMP of RPMCs, in a dose-dependent manner. The results indicate that DNP is capable of inducing histamine release from RPMCs by increasing of calcium uptake and intracellular cyclic GMP level.

  • PDF

Effect of the redox flow battery and electrode characteristics according to the heat treatment temperature of a carbon felt (탄소펠트의 열처리 온도에 따른 레독스흐름전지와 전극 특성에 미치는 영향)

  • Yoo, Hyosung;You, Hyunjin;Yu, Kihyun;Kang, Junyoung;Park, Hongsik;Choi, Woonghwi;Yoo, Dong Jin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Carbon felts manufactured by (Co)CNF were subjected to heat treatment under different temperatures to use for the electrode of a redox-flow battery. BET and weight loss were tested to investigate the physical properties of the carbon felt according to the heat treatment conditions. SEM and XPS were also analyzed to characterize their surface area. In addition, electrical resistance, CV (cyclic voltammetry) and RFB charge on the electrode properties were examined in accordance with the heat treatment conditions with the discharge performance. The changes of physical properties on the carbon felt surface was confirmed via SEM and BET analysis, The most addition of oxygen functional groups on the carbon felt surface was obtained when one hour heat treatment at $550^{\circ}C$ and it was confirmed by XPS analysis. After resulting the CV tests, the active area of the electrode was the largest at $550^{\circ}C$ heat treatment. The heat treatment experiment of vanadium redox flow battery using the carbon felts were tested at $400^{\circ}C$, $500^{\circ}C$ and $550^{\circ}C$. As a result, the charge-discharge energy efficiency of the heat treatment electrode was 72.9% and 79.8%, at $400^{\circ}C$ and $500^{\circ}C$, respectively. The efficiency of the heat treatment electrode at $550^{\circ}C$ was the best as 79.8% at $550^{\circ}C$.

Effects of periodic breast massage on the cyclical mastalgia of fertile women before their menstrual period (유방 마사지가 가임기 여성의 월경 전 주기적 유방통 완화에 미치는 효과)

  • Kang, Kyoung Ae;Lee, Ji A;Hur, Myung-Haeng
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.353-362
    • /
    • 2022
  • This study was a randomized controlled trial to examine the effects of breast massage applied to women of childbearing age with cyclic mastagia on breast pain, breast hardness, nipple extensibility, breast size, and breast blood circulation. The study participants were 54 women with cyclic mastalgia who were recruited from Medical Center C, Women's Hospital M, department stores located in City D, and Internet cafes. The experimental treatment was to apply breast massage for a total of 30 minutes, 15 minutes each to the left and right breasts during the period of cyclic mastalgia. After experimental treatment, breast pain (F=49.16, p<.001), breast hardness (Rt t=8.93, p<.001; Lt t=-10.34, p<.001), nipple extensibility (Rt t=3.58, p<.001 ; Lt t=4.66, p<.001), breast size (Rt F=60.59, p<.001; Lt F=51.05, p<.001) and breast blood circulation (Rt t=-1.30, p=.201; Lt t=-2.82, p=.007) were significantly different between the two groups. In conclusion, breast massage performed in this study was effective in relieving breast pain, relieving breast hardness, and improving breast blood circulation in participants with cyclic mastalgia.

A Study on the Alkali Hydrolysis of PET fabrics with Ultrasonic Application(II)- Surface Porosity and Oligomer Analysis - (초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(II) - 기공특성과 올리고머 분석 -)

  • 김삼수;서말용;박성우;윤태희;이승구;허만우
    • Textile Coloration and Finishing
    • /
    • v.14 no.6
    • /
    • pp.305-312
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The effects of ultrasonic application, treatment time and temperature at NaOH 4% and 6"A solution on the decomposition rate of PET fabrics. From the results of the decomposition rate of PET fabrics, the qualitative and quantitative analysis of oligomer after decomposition of PET fabrics carried out by the HPLC. On the other hand, the surface pore characteristics of decomposition PET fabrics measured by porosimetery. The pore characteristics on the surface of treated PET fiber depended on the decomposition rate and did not depend on the ultrasonic cavitation. The pore diameter of alkaline untreated PET fiber were 15A and those of treated PET fibers were 5~6$\AA$ at the maximum pore volume. The average pore sizes of fiber before and after treatment were 141 h and 160h, respectively. Total amount of oligomer of the untreated PET fibers were 1.70wt% and 67.7% of total oligomer occupied with PET cyclic trimer and PET cyclic tetramer. Total amount of oligomer of fiber with 26.9% and 48.0% of weight loss without ultrasonic application were 1.78wt% and 1.79wt%, respectively. Also total amount oligomer of fibers which were reduced 27.7% and 48.2% of weight loss with ultrasonic application were 1.74wt%. This result showed that the removal rate of oligomer in the process of alkaline hydrolysis with ultrasonic higher than that of without ultrasonic application.tion.

Effect of Annealing Heat Treatment to Corrosion Resistance of a Copper (구리의 내식성에 미치는 어닐링 열처리의 영향)

  • Kim Jin-Kyung;Moon Kyung-Man;Lee Jin-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.654-661
    • /
    • 2005
  • Copper is a well known alloying element that is used to improve the resistance to general corrosion of stainless steel And also Cu cation have the anti-fouling effect to inhibit adhesion of the marine algae and shellfish to the surface of heat exchanger cooling pipe or outside wall of the ship, Therefore there are some anti-fouling methods such as anti-fouling Paint mixed with copper oxide or MGPS(Marine Growth Preventing System) by using Cu cation dissolved to the sea wather solution. Cu cation can be dissolved spontaneously by galvanic current due to Potential difference between Cu and cooling pipe of heat exchanger with Ti material, which may be one of the anti-fouling designs. In this study the effect of annealing heat treatment to galvanic current and Polarization behavior was investigated with a electrochemical points of view such as measurement of corrosion Potential, anodic polarization curve. cyclic voltammetric curve, galvanic current etc The grain size of the surface in annealed at $700^{\circ}C$ was the smallest than that of other annealing temperatures. and also the corrosion Potential showed more positive potential than other annealing temperatures. The galvanic current between Ti and Cu with annealed at $700^{\circ}C$ was the largest value in the case of static condition. However its value in the case of flow condition was the smallest than the other temperatures. Therefore in order to increase anti-fouling effect by Cu cation, the optimum annealing temperature in static condition of sea water is $700^{\circ}C$, however non- heat treated specimen in the case of flow condition may be desirable.

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon;Jeon, Soo Hyeok;Park, Hyeon-Myeong;Jung, Yeon Gil;Myoung, Sang Won;Yang, Byung Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.344-351
    • /
    • 2018
  • The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.