• 제목/요약/키워드: Cyclic Seismic Loading

검색결과 539건 처리시간 0.021초

Seismic behaviour of repaired superelastic shape memory alloy reinforced concrete beam-column joint

  • Nehdi, Moncef;Alam, M. Shahria;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • 제7권5호
    • /
    • pp.329-348
    • /
    • 2011
  • Large-scale earthquakes pose serious threats to infrastructure causing substantial damage and large residual deformations. Superelastic (SE) Shape-Memory-Alloys (SMAs) are unique alloys with the ability to undergo large deformations, but can recover its original shape upon stress removal. The purpose of this research is to exploit this characteristic of SMAs such that concrete Beam-Column Joints (BCJs) reinforced with SMA bars at the plastic hinge region experience reduced residual deformation at the end of earthquakes. Another objective is to evaluate the seismic performance of SMA Reinforced Concrete BCJs repaired with flowable Structural-Repair-Concrete (SRC). A $\frac{3}{4}$-scale BCJ reinforced with SMA rebars in the plastic-hinge zone was tested under reversed cyclic loading, and subsequently repaired and retested. The joint was selected from an RC building located in the seismic region of western Canada. It was designed and detailed according to the NBCC 2005 and CSA A23.3-04 recommendations. The behaviour under reversed cyclic loading of the original and repaired joints, their load-storey drift, and energy dissipation ability were compared. The results demonstrate that SMA-RC BCJs are able to recover nearly all of their post-yield deformation, requiring a minimum amount of repair, even after a large earthquake, proving to be smart structural elements. It was also shown that the use of SRC to repair damaged BCJs can restore its full capacity.

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

Cyclic behavior of superelastic shape memory alloys (SMAs) under various loading conditions

  • Hu, Jong Wan
    • 도시과학
    • /
    • 제7권1호
    • /
    • pp.5-9
    • /
    • 2018
  • The nickel-titanium shape memory alloy (SMA), referred to as Nitinol, exhibits a superelastic effect that can be restored to its original shape even if a significant amount of deformation is applied at room temperature, without any additional heat treatment after removal of the load. Owing to these unique material characteristics, it has widely used as displacement control devices for seismic retrofitting in civil engineering fields as well as medical, electrical, electronic and mechanical fields. Contrary to ordinarty carbon steel, superelastic SMAs are very resistant to fatigue, and have force-displacement properties depending on loading speed. The change for the mechanical properties of superelastic SMAs are experimentally inviestigated in this study when loading cycle numbers and loading speeds are different. In addition, the standardized force-displacement properties of such superelastic SMAs are proposed with an aim to efficiently design the seismic retrofitting devices made of these materials.

Rehabilitation and strengthening of exterior RC beam-column connections using epoxy resin injection and FRP sheet wrapping: Experimental study

  • Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.723-736
    • /
    • 2019
  • The efficacy of a technique for the rehabilitation and strengthening of RC beam-column connections damaged due to cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged region to retrieved back the lost capacity and then strengthening using fiber reinforced polymer (FRP) sheets for capacity enhancement. Three common types of reduced scale RC exterior beam-column connections namely (a) beam-column connection with beam weak in flexure (BWF) (b) beam-column connections with beam weak in shear (BWS) and (c) beam-column connections with column weak in shear (CWS) subjected to reversed cyclic loading were considered for the experimental investigation. The rehabilitated and strengthened specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using FRP sheet significantly enhanced the seismic capacity of the connections.

표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법 (Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data)

  • 황진하;김훈태;류호완;김윤재;김진원;권형도
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.

SM490 TMC 강재의 반복소성모델의 정식화 및 유한요소해석 (Formulation of Cyclic Plasticity Model and FE Analysis for SM490 TMC)

  • 장갑철;장경호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.84-89
    • /
    • 2004
  • In this paper, cyclic plasticity model of SM490 TMC was formulated by basing on monotonic loading test and cyclic loading test. For exact description of cyclic performance and plastic deformation capacity of steel member using SM490 TMC, formulated cyclic plasticity model and finite deformation theory were applied to 3-dimensional elastic-plastic FE analysis. Cyclic plastic behavior of pipe-section steel column using SM490 TMC was clarified by carrying out numerical analysis. Also, in order to clarifying seismic performance of pipe-section steel column using SM490 TMC, analysis results were compared with analysis results of pipe-section steel column using SM490. A comparison of analysis results shows that SM490 TMC pipe-section steel column has a better cyclic performance for strength and energy dissipation than SM490 pipe-section steel column under cyclic loading

  • PDF

3차원 탄소성 유한변위해석을 이용한 고강도(POSTEN60, POSTEN80) 원형강교각의 내진성능에 관한 연구 (A Study on Seismic Performance of High-Strength Steel(POSTEN60, POSTEN80) Pipe-Section Piers using 3-Dimensional Elastic-Plastic Finite Deformation Analysis)

  • 장경호;장갑철;강재훈
    • 한국지진공학회논문집
    • /
    • 제8권6호통권40호
    • /
    • pp.45-54
    • /
    • 2004
  • 최근 강구조물의 장경간화 및 고층화로 인하여 고강도강재의 사용이 점차 증가하고 있다. 고강도강재(POSTEN60, POSTEN80)가 적용된 강구조물의 정확한 내진설계를 위해서는 반복하중 작용시 발생하는 대변형 및 비선형반복거동을 구현할 수 있는 해석기법이 필요하다. 본 연구에서는 고강도강재의 단조재하실험 및 반복하중실험을 기초하여 반복소성모델을 제안하였다. 제안된 소성모델과 유한변위이론을 적용한 3차원 탄소성 유한변위해석기법을 개발하였으며 이를 실험값과 비교하여 검증하였다. 검증된 3차원 탄소성 유한변위해석을 이용하여 고강도 원형강교각의 내진해석을 수행하였다. 또한, 고강도 원형강교각의 지름-두께비에 따른 내진성능을 명확히 하였다.

비보강 시멘트벽돌 건물의 내진성능 실험연구 (Experimental Study on Seismic Resistance of A Unreinforced Cement Brick Building)

  • 김장훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.298-307
    • /
    • 2000
  • The behavior of a unreinforced cement brick building structure subjected to earthquake loading was experimentally investigated. for this four full size wall specimens were tested under quasi-static in-plane cyclic loading. Experimental observations indicate that the failure modes of unreinforced masonry walls are principally governed by sliding or/and rocking depending on the aspect ration and magnitude of axial loading. Also found was the flexure or shear mode resulting from the degraded strength of brick and/or mortar due to the cyclic loading effect.

  • PDF

완화된 배근 상세를 갖는 병렬전단벽 구조시스템의 내진성능평가 (Seismic Performance of Coupled Shear Wall Structural System with Relaxed Reinforcement Details)

  • 송정원;천영수;송진규;서수연;양근혁
    • 콘크리트학회논문집
    • /
    • 제28권2호
    • /
    • pp.187-196
    • /
    • 2016
  • KBC2009에 의하면 특수전단벽과 연결되는 폭이 좁고 춤이 높은 연결보는 대각선 다발철근 보강을 실시해야 한다. 그러나 대각선 다발 철근의 사용은 시공성과 경제성에 부정적인 영향을 미칠 것으로 예상된다. 이에 본 연구에서는 4개의 서로 다른 상세를 갖는 연결보를 대상으로 주기하중 재하 실험을 실시하여 각각의 성능을 평가하였다. 또한 그 실험결과를 바탕으로 하여 특수전단벽과 연결보로 이루어진 병렬전단벽 구조시스템을 구성하여 FEMA P695에 따른 방법론으로 내진성능평가를 실시하였다.

다중거동 복합형 감쇠장치를 적용한 철골골조의 내진성능실험 (Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers)

  • 노지은;허석재;이상현
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.